Reverse converters for a new moduli set {22n-1, 2n, 22n+1}

被引:5
|
作者
Mohan, P. V. Ananda [1 ]
机构
[1] Elect Corp India Ltd, Bangalore 560052, Karnataka, India
关键词
RNS; VLSI design; digital signal processors; reverse converters; powers of two-related moduli set;
D O I
10.1007/s00034-006-0219-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new moduli set {2(2n) - 1, 2(n), 2(2n) + 1) derived from a recently proposed four moduli set {2(n) - 1, 2(n), 2(n) + 1, 2(2n) + 1) is considered, in this paper. The problem of reverse conversion has been considered, and it is shown that the proposed moduli set needs less reverse conversion time and area requirements than the converter for the four moduli set [2n - 1, 2n, 2n + 1, 22n + 11 from which it is derived. The proposed moduli set is also compared with two other well-known three moduli sets {2(k) - 1, 2(k), 2(k) + 1} and {2(n) - 1, 2(n), 2(n) - 1, 2(2n) for realizing the same dynamic range regarding the area and conversion times of the residue number system (RNS)-to-binary converters. Key words: RNS, VLSI design, digital signal processors, reverse converters, powers of two-related moduli set.
引用
收藏
页码:215 / 227
页数:13
相关论文
共 50 条
  • [1] Reverse Converters for a New Moduli Set {22n − 1, 2n, 22n + 1}
    P.V. Ananda Mohan
    [J]. Circuits, Systems & Signal Processing, 2007, 26 : 215 - 227
  • [2] Reverse converters for the moduli sets {22N-1, 2N, 22N+1} and {2N-3, 2N+1, 2N-1, 2N+3}
    Mohan, PVA
    [J]. 2004 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING & COMMUNICATIONS (SPCOM), 2004, : 188 - 192
  • [3] An Effective New CRT Based Reverse Converter for a Novel Moduli Set {22n+1-1, 22n+1,22n-1}
    Bankas, Edem Kwedzo
    Gbolagade, Kazeem Alagbe
    Cotofana, Sorin Dan
    [J]. PROCEEDINGS OF THE 2013 IEEE 24TH INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS (ASAP 13), 2013, : 142 - 146
  • [4] Efficient Reverse Converters for 4-Moduli Sets {22n-1 - 1,2n,2n + 1,2n - 1} and {22n-1,22n-1 - 1,2n + 1,2n - 1} Based on CRTs Algorithm
    Noorimehr, Mohammad Reza
    Hosseinzadeh, Mehdi
    Navi, Keivan
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2014, 33 (10) : 3145 - 3163
  • [5] A Modified RNS-to-Binary Converter Scheme for {22n+1-1, 22n+1, 22n-1} Moduli Set
    Bankas, Edem Kwedzo
    [J]. 2016 14TH IEEE INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2016,
  • [6] An Efficient Residue-to-Binary Converter for the New Moduli Set {2n/2 ± 1, 22n+1, 2n+1}
    Siewobr, Hillary
    Gbolagade, Kazeem A.
    Cotofana, Sorin
    [J]. 2014 14TH INTERNATIONAL SYMPOSIUM ON INTEGRATED CIRCUITS (ISIC), 2014, : 508 - 511
  • [7] A Residue to Binary Converter for a Balanced Moduli set {22n+1-1, 22n, 22n-1}
    Bankas, Edem Kwedzo
    Gbolagade, Kazeem Alagbe
    [J]. 2013 INTERNATIONAL JOINT CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY & UBI-MEDIA COMPUTING (ICAST-UMEDIA), 2013, : 211 - 215
  • [8] An efficient reverse converter for the 4-moduli set {2n-1, 2n, 2n+1, 22n+1} based on the new Chinese remainder theorem
    Cao, B
    Chang, CH
    Srikanthan, T
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2003, 50 (10) : 1296 - 1303
  • [9] New MRC Adder-Based Reverse Converter for the Moduli Set {2n, 22n+1-1, 22n+2-1}
    Bankas, Edem Kwedzo
    Gbolagade, Kazeem Alagbe
    [J]. COMPUTER JOURNAL, 2015, 58 (07): : 1566 - 1572
  • [10] ROM-less RNS-to-binary converter moduli {22n-1, 22n+1, 2n-3, 2n+3}
    Matutino, Pedro Miguens
    Chaves, Ricardo
    Sousa, Leonel
    [J]. 2014 14TH INTERNATIONAL SYMPOSIUM ON INTEGRATED CIRCUITS (ISIC), 2014, : 432 - 435