Nonparametric estimation of the cross ratio function

被引:3
|
作者
Abrams, Steven [1 ,2 ]
Janssen, Paul [1 ]
Swanepoel, Jan [3 ]
Veraverbeke, Noel [1 ,3 ]
机构
[1] Hasselt Univ, Ctr Stat, Dept Math, Campus Diepenbeek,Gebouw D, B-3590 Diepenbeek, Belgium
[2] Univ Antwerp, Dept Epidemiol & Social Med, Campus Drie Eiken,Univ Pl 1, B-2610 Antwerp, Belgium
[3] North West Univ, Sch Comp Sci Stat & Math, Potchefstroom Campus,Hoffman St 11, ZA-2520 Potchefstroom, South Africa
基金
美国国家科学基金会;
关键词
Asymptotic distribution; Bernstein estimation; Copula; Cross ratio function; Hazard rate; HAZARD RATE ESTIMATION; NORMAL TRANSFORMATION MODELS; BERNSTEIN ESTIMATOR; COPULA; ASSOCIATION; TIME; DENSITY; BEHAVIOR; EVENT;
D O I
10.1007/s10463-019-00709-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The cross ratio function (CRF) is a commonly used tool to describe local dependence between two correlated variables. Being a ratio of conditional hazards, the CRF can be rewritten in terms of (first and second derivatives of) the survival copula of these variables. Bernstein estimators for (the derivatives of) this survival copula are used to define a nonparametric estimator of the cross ratio, and asymptotic normality thereof is established. We consider simulations to study the finite sample performance of our estimator for copulas with different types of local dependency. A real dataset is used to investigate the dependence between food expenditure and net income. The estimated CRF reveals that families with a low net income relative to the mean net income will spend less money to buy food compared to families with larger net incomes. This dependence, however, disappears when the net income is large compared to the mean income.
引用
收藏
页码:771 / 801
页数:31
相关论文
共 50 条
  • [21] Nonparametric estimation of the cyclic cross spectrum
    Sadler, BM
    Dandawate, AV
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (01) : 351 - 358
  • [22] Nonparametric estimation of cause-specific cross hazard ratio with bivariate competing risks data
    Cheng, Yu
    Fine, Jason P.
    BIOMETRIKA, 2008, 95 (01) : 233 - 240
  • [23] NONPARAMETRIC ESTIMATION OF A SMOOTH REGRESSION FUNCTION
    CLARK, RM
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 107 - 113
  • [24] Efficient nonparametric estimation of a distribution function
    Modarres, R
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (01) : 75 - 95
  • [25] Nonparametric estimation of isotropic covariance function
    Wang, Yiming
    Ghosh, Sujit K.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2023, 35 (01) : 198 - 237
  • [26] NONPARAMETRIC-ESTIMATION OF A REGRESSION FUNCTION
    BURMAN, P
    CHEN, KW
    ANNALS OF STATISTICS, 1989, 17 (04): : 1567 - 1596
  • [27] A NONPARAMETRIC TECHNIQUE FOR TAPER FUNCTION ESTIMATION
    MHIRIT, O
    POSTAIRE, JG
    CANADIAN JOURNAL OF FOREST RESEARCH-REVUE CANADIENNE DE RECHERCHE FORESTIERE, 1985, 15 (05): : 862 - 871
  • [28] Kriging with nonparametric variance function estimation
    Opsomer, JD
    Ruppert, D
    Wand, MP
    Holst, U
    Hoessjer, O
    DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 111 - 111
  • [29] Kriging with nonparametric variance function estimation
    Opsomer, JD
    Ruppert, D
    Wand, MP
    Holst, U
    Hössjer, O
    BIOMETRICS, 1999, 55 (03) : 704 - 710
  • [30] Nonparametric estimation of quantile density function
    Soni, Pooja
    Dewan, Isha
    Jain, Kanchan
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (12) : 3876 - 3886