Nonparametric estimation of the cross ratio function

被引:3
|
作者
Abrams, Steven [1 ,2 ]
Janssen, Paul [1 ]
Swanepoel, Jan [3 ]
Veraverbeke, Noel [1 ,3 ]
机构
[1] Hasselt Univ, Ctr Stat, Dept Math, Campus Diepenbeek,Gebouw D, B-3590 Diepenbeek, Belgium
[2] Univ Antwerp, Dept Epidemiol & Social Med, Campus Drie Eiken,Univ Pl 1, B-2610 Antwerp, Belgium
[3] North West Univ, Sch Comp Sci Stat & Math, Potchefstroom Campus,Hoffman St 11, ZA-2520 Potchefstroom, South Africa
基金
美国国家科学基金会;
关键词
Asymptotic distribution; Bernstein estimation; Copula; Cross ratio function; Hazard rate; HAZARD RATE ESTIMATION; NORMAL TRANSFORMATION MODELS; BERNSTEIN ESTIMATOR; COPULA; ASSOCIATION; TIME; DENSITY; BEHAVIOR; EVENT;
D O I
10.1007/s10463-019-00709-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The cross ratio function (CRF) is a commonly used tool to describe local dependence between two correlated variables. Being a ratio of conditional hazards, the CRF can be rewritten in terms of (first and second derivatives of) the survival copula of these variables. Bernstein estimators for (the derivatives of) this survival copula are used to define a nonparametric estimator of the cross ratio, and asymptotic normality thereof is established. We consider simulations to study the finite sample performance of our estimator for copulas with different types of local dependency. A real dataset is used to investigate the dependence between food expenditure and net income. The estimated CRF reveals that families with a low net income relative to the mean net income will spend less money to buy food compared to families with larger net incomes. This dependence, however, disappears when the net income is large compared to the mean income.
引用
收藏
页码:771 / 801
页数:31
相关论文
共 50 条
  • [31] Nonparametric estimation of hazard quantile function
    Sankaran, P. G.
    Nair, N. Unnikrishnan
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (06) : 757 - 767
  • [32] A NOTE ON OPTIMAL NONPARAMETRIC FUNCTION ESTIMATION
    INOUE, H
    TAYLOR, RL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 123 (02) : 559 - 563
  • [33] Nonparametric estimation of the bivariate survivor function
    Prentice, RL
    Moodie, Z
    Wu, JR
    PROCEEDINGS OF THE SECOND SEATTLE SYMPOSIUM IN BIOSTATISTICS: ANALYSIS OF CORRELATED DATA, 2004, 179 : 113 - 142
  • [34] Nonparametric Estimation of the Geometric Vitality Function
    Rajesh, G.
    Abdul-Sathar, E. I.
    Maya, R.
    Nair, K. R. Muraleedharan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (01) : 115 - 130
  • [35] NONPARAMETRIC-ESTIMATION OF A REGRESSION FUNCTION
    CHENG, KF
    LIN, PE
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 57 (02): : 223 - 233
  • [36] ON NONPARAMETRIC ESTIMATION OF A HEDONIC PRICE FUNCTION
    Haupt, Harry
    Schnurbus, Joachim
    Tschernig, Rolf
    JOURNAL OF APPLIED ECONOMETRICS, 2010, 25 (05) : 894 - 901
  • [37] Nonparametric estimation of a function on a circular domain
    Pawlak, M
    Liao, SX
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 356 - 356
  • [38] Efficient nonparametric estimation of a distribution function
    Modarres, Reza
    Computational Statistics and Data Analysis, 2002, 38 (05): : 75 - 95
  • [39] Nonparametric estimation of a recurrent survival function
    Wang, MC
    Chang, SH
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (445) : 146 - 153
  • [40] A Nonparametric Method for Penetrance Function Estimation
    Alarcon, F.
    Bonaiti-Pellie, C.
    Harari-Kermadec, H.
    GENETIC EPIDEMIOLOGY, 2009, 33 (01) : 38 - 44