Nonparametric estimation of cause-specific cross hazard ratio with bivariate competing risks data

被引:29
|
作者
Cheng, Yu [1 ]
Fine, Jason P. [2 ,3 ]
机构
[1] Univ Pittsburgh, Dept Stat, Pittsburgh, PA 15260 USA
[2] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
关键词
bivariate hazard function; cross ratio; dependent censoring; empirical processes theory; rank correlation;
D O I
10.1093/biomet/asm089
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose an alternative representation of the cause-specific cross hazard ratio for bivariate competing risks data. The representation leads to a simple plug-in estimator, unlike an existing ad hoc procedure. The large sample properties of the resulting inferences are established. Simulations and a real data example demonstrate that the proposed methodology may substantially reduce the computational burden of the existing procedure, while maintaining similar efficiency properties.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条