Nonparametric estimation of cause-specific cross hazard ratio with bivariate competing risks data

被引:29
|
作者
Cheng, Yu [1 ]
Fine, Jason P. [2 ,3 ]
机构
[1] Univ Pittsburgh, Dept Stat, Pittsburgh, PA 15260 USA
[2] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
关键词
bivariate hazard function; cross ratio; dependent censoring; empirical processes theory; rank correlation;
D O I
10.1093/biomet/asm089
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose an alternative representation of the cause-specific cross hazard ratio for bivariate competing risks data. The representation leads to a simple plug-in estimator, unlike an existing ad hoc procedure. The large sample properties of the resulting inferences are established. Simulations and a real data example demonstrate that the proposed methodology may substantially reduce the computational burden of the existing procedure, while maintaining similar efficiency properties.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 50 条
  • [21] Testing equality of cause-specific hazard rates corresponding to m competing risks among K groups
    S. B. Kulathinal
    Dario Gasbarra
    Lifetime Data Analysis, 2002, 8 : 147 - 161
  • [22] Testing equality of cause-specific hazard rates corresponding to m competing risks among K groups
    S. B. Kulathinal
    Dario Gasbarra
    Lifetime Data Analysis, 2002, 8 (4) : 413 - 413
  • [23] Piecewise Cause-Specific Association Analyses of Multivariate Untied or Tied Competing Risks Data
    Wang, Hao
    Cheng, Yu
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2014, 10 (02): : 197 - 220
  • [24] Kernel regression for cause-specific hazard models with nonparametric covariate functions
    Qi, Xiaomeng
    Yu, Zhangsheng
    JOURNAL OF NONPARAMETRIC STATISTICS, 2023, 35 (03) : 642 - 667
  • [25] Competing risks analysis with missing cause-of-failure-penalized likelihood estimation of cause-specific Cox models
    Lo, Serigne N.
    Ma, Jun
    Manuguerra, Maurizio
    Moreno-Betancur, Margarita
    Scolyer, Richard A.
    Thompson, John F.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2022, 31 (05) : 978 - 994
  • [26] Nonparametric association analysis of bivariate left-truncated competing risks data
    Cheng, Yu
    Shen, Pao-sheng
    Zhang, Zhumin
    Lai, HuiChuan J.
    BIOMETRICAL JOURNAL, 2016, 58 (03) : 635 - 651
  • [27] A review of methods to estimate cause-specific mortality in presence of competing risks
    Heisey, Dennis M.
    Patterson, Brent R.
    JOURNAL OF WILDLIFE MANAGEMENT, 2006, 70 (06): : 1544 - 1555
  • [28] Nonparametric Analysis of Bivariate Gap Time with Competing Risks
    Huang, Chiung-Yu
    Wang, Chenguang
    Wang, Mei-Cheng
    BIOMETRICS, 2016, 72 (03) : 780 - 790
  • [29] Risk of Cause-Specific Death in Individuals With Diabetes: A Competing Risks Analysis
    Miguel Baena-Diez, Jose
    Penafiel, Judit
    Subirana, Isaac
    Ramos, Rafel
    Elosua, Roberto
    Marin-Ibanez, Alejandro
    Jesus Guembe, Maria
    Rigo, Fernando
    Jose Tormo-Diaz, Maria
    Moreno-Iribas, Conchi
    Josep Cabre, Joan
    Segura, Antonio
    Garcia-Lareo, Manel
    Gomez de la Carnara, Agustin
    Lapetra, Jose
    Quesada, Miguel
    Marrugat, Jaume
    Jose Medrano, Maria
    Berjon, Jesus
    Frontera, Guiem
    Gavrila, Diana
    Barricarte, Aurelio
    Basora, Josep
    Maria Garcia, Jose
    Pavone, Natalia C.
    Lora-Pablos, David
    Mayora, Eduardo
    Franch, Josep
    Mata, Manel
    Castell, Conxa
    Frances, Albert
    Grau, Maria
    DIABETES CARE, 2016, 39 (11) : 1987 - 1995
  • [30] Competing risks and cause-specific mortality in patients with pancreatic neuroendocrine tumors
    Li, Zhuyin
    Du, Shuai
    Feng, Wei
    Zhang, Weibo
    Li, Guochuang
    Wei, Junfeng
    Zhang, Guoqing
    Zhao, Longshuan
    EUROPEAN JOURNAL OF GASTROENTEROLOGY & HEPATOLOGY, 2019, 31 (07) : 749 - 755