Stretched-coordinate PMLs for Maxwell's equations in the discontinuous Galerkin time-domain method

被引:8
|
作者
Koenig, Michael [1 ]
Prohm, Christopher
Busch, Kurt
Niegemann, Jens
机构
[1] Karlsruhe Inst Technol KIT, Inst Theoret Festkorperphys, Karlsruhe, Germany
来源
OPTICS EXPRESS | 2011年 / 19卷 / 05期
关键词
BOUNDARY-CONDITIONS; SIMULATIONS;
D O I
10.1364/OE.19.004618
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The discontinuous Galerkin time-domain method (DGTD) is an emerging technique for the numerical simulation of time-dependent electromagnetic phenomena. For many applications it is necessary to model the infinite space which surrounds scatterers and sources. As a result, absorbing boundaries which mimic its properties play a key role in making DGTD a versatile tool for various kinds of systems. Popular techniques include the Silver-Muller boundary condition and uniaxial perfectly matched layers (UPMLs). We provide novel instructions for the implementation of stretched-coordinate perfectly matched layers in a discontinuous Galerkin framework and compare the performance of the three absorbers for a three-dimensional test system. (C) 2011 Optical Society of America
引用
收藏
页码:4618 / 4631
页数:14
相关论文
共 50 条
  • [1] Discontinuous Galerkin method for the time-domain Maxwell's equations
    Kabakian, AV
    Shankar, VY
    Hall, VF
    [J]. COMPUTATIONAL FLUID DYNAMICS 2002, 2003, : 153 - 158
  • [2] Interior Penalty Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations
    Dosopoulos, Stylianos
    Lee, Jin-Fa
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3512 - 3515
  • [3] The Discontinuous Galerkin Time-Domain method for Maxwell's equations with anisotropic materials
    Koenig, Michael
    Busch, Kurt
    Niegemann, Jens
    [J]. PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2010, 8 (04) : 303 - 309
  • [4] A Nodal Continuous-Discontinuous Galerkin Time-Domain Method for Maxwell's Equations
    Diaz Angulo, Luis
    Alvarez, Jesus
    Teixeira, Fernando L.
    Fernandez Pantoja, M.
    Garcia, Salvador G.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (10) : 3081 - 3093
  • [5] The Discontinuous Galerkin Finite-Element Time-Domain Method Solution of Maxwell's Equations
    Gedney, Stephen D.
    Luo, Chong
    Roden, J. Alan
    Crawford, Robert D.
    Guernsey, Bryan
    Miller, Jeffrey A.
    Kramer, Tyler
    Lucas, Eric W.
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2009, 24 (02): : 129 - 142
  • [6] Preliminary investigation of a nonconforming discontinuous Galerkin method for solving the time-domain Maxwell equations
    Fahs, Hassan
    Fezoui, Loula
    Lanteri, Stephane
    Rapetti, Francesca
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 1254 - 1257
  • [7] An implicit leap-frog discontinuous Galerkin method for the time-domain Maxwell's equations in metamaterials
    Li, Jichun
    Waters, Jiajia Wang
    Machorro, Eric A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 223 : 43 - 54
  • [8] Discontinuous Galerkin Time-Domain Solution of the Purely Hyperbolic Maxwell Equations
    Yan, Su
    Jin, Jian-Ming
    [J]. 2016 IEEE/ACES INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION TECHNOLOGY AND SYSTEMS (ICWITS) AND APPLIED COMPUTATIONAL ELECTROMAGNETICS (ACES), 2016,
  • [9] Discontinuous Galerkin methods for Maxwell's equations in the time domain
    Cohen, Gary
    Ferrieres, Xavier
    Pernet, Sebastien
    [J]. COMPTES RENDUS PHYSIQUE, 2006, 7 (05) : 494 - 500
  • [10] Stability of a Leap-Frog Discontinuous Galerkin Method for Time-Domain Maxwell's Equations in Anisotropic Materials
    Araujo, Aderito
    Barbeiro, Silvia
    Ghalati, Maryam Khaksar
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 21 (05) : 1350 - 1375