Stretched-coordinate PMLs for Maxwell's equations in the discontinuous Galerkin time-domain method

被引:8
|
作者
Koenig, Michael [1 ]
Prohm, Christopher
Busch, Kurt
Niegemann, Jens
机构
[1] Karlsruhe Inst Technol KIT, Inst Theoret Festkorperphys, Karlsruhe, Germany
来源
OPTICS EXPRESS | 2011年 / 19卷 / 05期
关键词
BOUNDARY-CONDITIONS; SIMULATIONS;
D O I
10.1364/OE.19.004618
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The discontinuous Galerkin time-domain method (DGTD) is an emerging technique for the numerical simulation of time-dependent electromagnetic phenomena. For many applications it is necessary to model the infinite space which surrounds scatterers and sources. As a result, absorbing boundaries which mimic its properties play a key role in making DGTD a versatile tool for various kinds of systems. Popular techniques include the Silver-Muller boundary condition and uniaxial perfectly matched layers (UPMLs). We provide novel instructions for the implementation of stretched-coordinate perfectly matched layers in a discontinuous Galerkin framework and compare the performance of the three absorbers for a three-dimensional test system. (C) 2011 Optical Society of America
引用
收藏
页码:4618 / 4631
页数:14
相关论文
共 50 条
  • [1] Discontinuous Galerkin method for the time-domain Maxwell's equations
    Kabakian, AV
    Shankar, VY
    Hall, VF
    COMPUTATIONAL FLUID DYNAMICS 2002, 2003, : 153 - 158
  • [2] Interior Penalty Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations
    Dosopoulos, Stylianos
    Lee, Jin-Fa
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3512 - 3515
  • [3] The Discontinuous Galerkin Time-Domain method for Maxwell's equations with anisotropic materials
    Koenig, Michael
    Busch, Kurt
    Niegemann, Jens
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2010, 8 (04) : 303 - 309
  • [4] A Nodal Continuous-Discontinuous Galerkin Time-Domain Method for Maxwell's Equations
    Diaz Angulo, Luis
    Alvarez, Jesus
    Teixeira, Fernando L.
    Fernandez Pantoja, M.
    Garcia, Salvador G.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (10) : 3081 - 3093
  • [5] The Discontinuous Galerkin Finite-Element Time-Domain Method Solution of Maxwell's Equations
    Gedney, Stephen D.
    Luo, Chong
    Roden, J. Alan
    Crawford, Robert D.
    Guernsey, Bryan
    Miller, Jeffrey A.
    Kramer, Tyler
    Lucas, Eric W.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2009, 24 (02): : 129 - 142
  • [6] Preliminary investigation of a nonconforming discontinuous Galerkin method for solving the time-domain Maxwell equations
    Fahs, Hassan
    Fezoui, Loula
    Lanteri, Stephane
    Rapetti, Francesca
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 1254 - 1257
  • [7] An implicit leap-frog discontinuous Galerkin method for the time-domain Maxwell's equations in metamaterials
    Li, Jichun
    Waters, Jiajia Wang
    Machorro, Eric A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 223 : 43 - 54
  • [8] Discontinuous Galerkin Time-Domain Solution of the Purely Hyperbolic Maxwell Equations
    Yan, Su
    Jin, Jian-Ming
    2016 IEEE/ACES INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION TECHNOLOGY AND SYSTEMS (ICWITS) AND APPLIED COMPUTATIONAL ELECTROMAGNETICS (ACES), 2016,
  • [9] Discontinuous Galerkin methods for Maxwell's equations in the time domain
    Cohen, Gary
    Ferrieres, Xavier
    Pernet, Sebastien
    COMPTES RENDUS PHYSIQUE, 2006, 7 (05) : 494 - 500
  • [10] Stability of a Leap-Frog Discontinuous Galerkin Method for Time-Domain Maxwell's Equations in Anisotropic Materials
    Araujo, Aderito
    Barbeiro, Silvia
    Ghalati, Maryam Khaksar
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017, 21 (05) : 1350 - 1375