Preliminary investigation of a nonconforming discontinuous Galerkin method for solving the time-domain Maxwell equations

被引:10
|
作者
Fahs, Hassan [1 ]
Fezoui, Loula [1 ]
Lanteri, Stephane [1 ]
Rapetti, Francesca [2 ]
机构
[1] IINRIA, F-06902 Sophia Antipolis, France
[2] Nice Sophia Antipolis Univ, JA Dieudonne Math Lab, UMR CNRS 6621, F-06108 Nice, France
关键词
discontinuous Galerkin method; Maxwell's equations; nonconforming triangular meshes;
D O I
10.1109/TMAG.2007.916577
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper is concerned with the design of a high-order discontinuous Galerkin (DG) method for solving the 2-D time-domain Maxwell equations on nonconforming triangular meshes. The proposed DG method allows for using nonconforming meshes with arbitrary-level hanging nodes. This method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements of the mesh, with a leap-frog time integration scheme. Numerical experiments are presented which both validate the theoretical results and provide further insights regarding to the practical performance of the proposed DG method, particulary when nonconforming meshes are employed.
引用
收藏
页码:1254 / 1257
页数:4
相关论文
共 50 条
  • [1] Discontinuous Galerkin method for the time-domain Maxwell's equations
    Kabakian, AV
    Shankar, VY
    Hall, VF
    COMPUTATIONAL FLUID DYNAMICS 2002, 2003, : 153 - 158
  • [2] Interior Penalty Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations
    Dosopoulos, Stylianos
    Lee, Jin-Fa
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3512 - 3515
  • [3] The Discontinuous Galerkin Time-Domain method for Maxwell's equations with anisotropic materials
    Koenig, Michael
    Busch, Kurt
    Niegemann, Jens
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2010, 8 (04) : 303 - 309
  • [4] Discontinuous Galerkin time-domain solution of Maxwell's equations on locally-refined nonconforming Cartesian grids
    Canouet, N
    Fezoui, L
    Piperno, S
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2005, 24 (04) : 1381 - 1401
  • [5] A Nodal Continuous-Discontinuous Galerkin Time-Domain Method for Maxwell's Equations
    Diaz Angulo, Luis
    Alvarez, Jesus
    Teixeira, Fernando L.
    Fernandez Pantoja, M.
    Garcia, Salvador G.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (10) : 3081 - 3093
  • [6] Discontinuous Galerkin Time-Domain Solution of the Purely Hyperbolic Maxwell Equations
    Yan, Su
    Jin, Jian-Ming
    2016 IEEE/ACES INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION TECHNOLOGY AND SYSTEMS (ICWITS) AND APPLIED COMPUTATIONAL ELECTROMAGNETICS (ACES), 2016,
  • [7] The Discontinuous Galerkin Finite-Element Time-Domain Method Solution of Maxwell's Equations
    Gedney, Stephen D.
    Luo, Chong
    Roden, J. Alan
    Crawford, Robert D.
    Guernsey, Bryan
    Miller, Jeffrey A.
    Kramer, Tyler
    Lucas, Eric W.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2009, 24 (02): : 129 - 142
  • [8] Stretched-coordinate PMLs for Maxwell's equations in the discontinuous Galerkin time-domain method
    Koenig, Michael
    Prohm, Christopher
    Busch, Kurt
    Niegemann, Jens
    OPTICS EXPRESS, 2011, 19 (05): : 4618 - 4631
  • [9] An implicit hybridized discontinuous Galerkin method for the 3D time-domain Maxwell equations
    Christophe, Alexandra
    Descombes, Stephane
    Lanteri, Stephane
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 319 : 395 - 408
  • [10] An unconditionally stable discontinuous Galerkin method for solving the 2-D time-domain Maxwell equations on unstructured triangular meshes
    Catella, Adrien
    Dolean, Victorita
    Lanteri, Stephane
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 1250 - 1253