A Nodal Continuous-Discontinuous Galerkin Time-Domain Method for Maxwell's Equations

被引:12
|
作者
Diaz Angulo, Luis [1 ]
Alvarez, Jesus [2 ]
Teixeira, Fernando L. [3 ,4 ]
Fernandez Pantoja, M. [1 ]
Garcia, Salvador G. [1 ]
机构
[1] Univ Granada, Dept Electromagnetism, E-18071 Granada, Spain
[2] Airbus Def & Space, Getafe 28906, Spain
[3] Ohio State Univ, Electrosci Lab, Columbus, OH 43212 USA
[4] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43212 USA
基金
美国国家科学基金会;
关键词
Continuous-discontinuous Galerkin time-domain (CDGTD); continuous Galerkin (CG) method; discontinuous Galerkin (DG) method; discontinuous Galerkin time-domain (DGTD); Maxwell's equations; MIXED FINITE-ELEMENTS; RUNGE-KUTTA SCHEMES; LOW-STORAGE; ORDER; VECTOR;
D O I
10.1109/TMTT.2015.2472411
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new nodal hybrid continuous-discontinuous Galerkin time-domain (CDGTD) method for the solution of Maxwell's curl equations is proposed and analyzed. This hybridization is made by clustering small collections of elements with a continuous Galerkin (CG) formalism. These clusters exchange information with their exterior through a discontinuous Galerkin (DG) numerical flux. This scheme shows reduced numerical dispersion error with respect to classical DG formulations for certain orders and numbers of clustered elements. The spectral radius of the clustered semi-discretized operator is smaller than its DG counterpart allowing for larger time steps in explicit time integrators. Additionally, the continuity across the element boundaries allows us a reduction of the number of degrees of freedom of up to about 80% for a low-order three-dimensional implementation.
引用
收藏
页码:3081 / 3093
页数:13
相关论文
共 50 条
  • [1] Discontinuous Galerkin method for the time-domain Maxwell's equations
    Kabakian, AV
    Shankar, VY
    Hall, VF
    [J]. COMPUTATIONAL FLUID DYNAMICS 2002, 2003, : 153 - 158
  • [2] A 3-D Continuous-Discontinuous Galerkin Finite-Element Time-Domain Method for Maxwell's Equations
    Xu, Hao
    Ding, Dazhi
    Bi, Junjian
    Chen, Rushan
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2017, 16 : 908 - 911
  • [3] Interior Penalty Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations
    Dosopoulos, Stylianos
    Lee, Jin-Fa
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3512 - 3515
  • [4] The Discontinuous Galerkin Time-Domain method for Maxwell's equations with anisotropic materials
    Koenig, Michael
    Busch, Kurt
    Niegemann, Jens
    [J]. PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2010, 8 (04) : 303 - 309
  • [5] The Discontinuous Galerkin Finite-Element Time-Domain Method Solution of Maxwell's Equations
    Gedney, Stephen D.
    Luo, Chong
    Roden, J. Alan
    Crawford, Robert D.
    Guernsey, Bryan
    Miller, Jeffrey A.
    Kramer, Tyler
    Lucas, Eric W.
    [J]. APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2009, 24 (02): : 129 - 142
  • [6] Stretched-coordinate PMLs for Maxwell's equations in the discontinuous Galerkin time-domain method
    Koenig, Michael
    Prohm, Christopher
    Busch, Kurt
    Niegemann, Jens
    [J]. OPTICS EXPRESS, 2011, 19 (05): : 4618 - 4631
  • [7] Preliminary investigation of a nonconforming discontinuous Galerkin method for solving the time-domain Maxwell equations
    Fahs, Hassan
    Fezoui, Loula
    Lanteri, Stephane
    Rapetti, Francesca
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 1254 - 1257
  • [8] An implicit leap-frog discontinuous Galerkin method for the time-domain Maxwell's equations in metamaterials
    Li, Jichun
    Waters, Jiajia Wang
    Machorro, Eric A.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 223 : 43 - 54
  • [9] An Explicit Nodal Space-Time Discontinuous Galerkin Method for Maxwell's Equations
    Angulo, L. D.
    Alvarez, Jesus
    Fernandez Pantoja, Mario
    Gonzalez Garcia, Salvador
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (12) : 827 - 829
  • [10] Discontinuous Galerkin Time-Domain Solution of the Purely Hyperbolic Maxwell Equations
    Yan, Su
    Jin, Jian-Ming
    [J]. 2016 IEEE/ACES INTERNATIONAL CONFERENCE ON WIRELESS INFORMATION TECHNOLOGY AND SYSTEMS (ICWITS) AND APPLIED COMPUTATIONAL ELECTROMAGNETICS (ACES), 2016,