Stretched-coordinate PMLs for Maxwell's equations in the discontinuous Galerkin time-domain method

被引:8
|
作者
Koenig, Michael [1 ]
Prohm, Christopher
Busch, Kurt
Niegemann, Jens
机构
[1] Karlsruhe Inst Technol KIT, Inst Theoret Festkorperphys, Karlsruhe, Germany
来源
OPTICS EXPRESS | 2011年 / 19卷 / 05期
关键词
BOUNDARY-CONDITIONS; SIMULATIONS;
D O I
10.1364/OE.19.004618
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The discontinuous Galerkin time-domain method (DGTD) is an emerging technique for the numerical simulation of time-dependent electromagnetic phenomena. For many applications it is necessary to model the infinite space which surrounds scatterers and sources. As a result, absorbing boundaries which mimic its properties play a key role in making DGTD a versatile tool for various kinds of systems. Popular techniques include the Silver-Muller boundary condition and uniaxial perfectly matched layers (UPMLs). We provide novel instructions for the implementation of stretched-coordinate perfectly matched layers in a discontinuous Galerkin framework and compare the performance of the three absorbers for a three-dimensional test system. (C) 2011 Optical Society of America
引用
收藏
页码:4618 / 4631
页数:14
相关论文
共 50 条
  • [31] An unconditionally stable discontinuous Galerkin method for solving the 2-D time-domain Maxwell equations on unstructured triangular meshes
    Catella, Adrien
    Dolean, Victorita
    Lanteri, Stephane
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 1250 - 1253
  • [32] Comparison of Low-Storage Runge-Kutta Schemes for Discontinuous Galerkin Time-Domain Simulations of Maxwell's Equations
    Diehl, Richard
    Busch, Kurt
    Niegemann, Jens
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2010, 7 (08) : 1572 - 1580
  • [33] A SPACE-TIME DISCONTINUOUS GALERKIN TREFFTZ METHOD FOR TIME DEPENDENT MAXWELL'S EQUATIONS
    Egger, Herbert
    Kretzschmar, Fritz
    Schnepp, Sascha M.
    Weiland, Thomas
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05): : B689 - B711
  • [34] Locally Implicit Time Integration Strategies in a Discontinuous Galerkin Method for Maxwell’s Equations
    Stéphane Descombes
    Stéphane Lanteri
    Ludovic Moya
    Journal of Scientific Computing, 2013, 56 : 190 - 218
  • [35] Locally Implicit Time Integration Strategies in a Discontinuous Galerkin Method for Maxwell's Equations
    Descombes, Stephane
    Lanteri, Stephane
    Moya, Ludovic
    JOURNAL OF SCIENTIFIC COMPUTING, 2013, 56 (01) : 190 - 218
  • [36] An Explicit Nodal Space-Time Discontinuous Galerkin Method for Maxwell's Equations
    Angulo, L. D.
    Alvarez, Jesus
    Fernandez Pantoja, Mario
    Gonzalez Garcia, Salvador
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (12) : 827 - 829
  • [37] Discontinuous Galerkin Time-Domain Method Based on Regular Hexahedron
    Gong, Junru
    Peng, Da
    Xu, Yanlin
    Yang, Hu
    Tang, Xingji
    PROCEEDINGS OF 2014 3RD ASIA-PACIFIC CONFERENCE ON ANTENNAS AND PROPAGATION (APCAP 2014), 2014, : 985 - 986
  • [38] Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell's equations
    Montseny, E.
    Pernet, S.
    Ferrieres, X.
    Cohen, G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (14) : 6795 - 6820
  • [39] A Low-Storage Discontinuous Galerkin Time-Domain Method
    Tian, Cheng-Yi
    Shi, Yan
    Liang, Chang-Hong
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2017, 27 (01) : 1 - 3
  • [40] A Compact Unconditionally Stable Method for Time-Domain Maxwell's Equations
    Su, Zhuo
    Yang, Yongqin
    Long, Yunliang
    INTERNATIONAL JOURNAL OF ANTENNAS AND PROPAGATION, 2013, 2013