Stochastic evolution equations in UMD Banach spaces

被引:108
|
作者
van Neerven, J. M. A. M. [2 ]
Veraar, M. C. [2 ]
Weis, L. [1 ]
机构
[1] Tech Univ Karlsruhe, Inst Math 1, D-76128 Karlsruhe, Germany
[2] Delft Univ Technol, Delft Inst Appl Math, NL-2600 GA Delft, Netherlands
关键词
parabolic stochastic evolution equations; UMD Banach spaces; stochastic convolutions; gamma-radonifying operators; L-gamma(2)-Lipschitz functions;
D O I
10.1016/j.jfa.2008.03.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss existence, uniqueness, and space-time Holder regularity for solutions of the parabolic stochastic evolution equation dU(t) = (AU(t) + F(t, U(t)))dt + B(t, U(t))dW(H)(t), t is an element of [0,T-0], U(0) = u(0), where A generates an analytic C-0-semigroup on a UMD, Banach space E and W-H is a cylindrical Brownian motion with values in a Hilbert space H. We prove that if the mappings F: [0, T] x E -> E and B: [0, T] x E -> L(H, E) satisfy suitable Lipschitz conditions and uo is F-0-measurable and bounded, then this problem has a unique mild solution, which has trajectories in C-lambda ([0, T]; D((-A)(theta)))) provided lambda >= 0 and theta >= 0 satisfy lambda + theta < 1/2. Various extensions are given and the results are applied to parabolic stochastic partial differential equations. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:940 / 993
页数:54
相关论文
共 50 条
  • [41] Asymptotics of evolution equations beyond Banach spaces
    Jacob, B.
    Wegner, S. -A.
    SEMIGROUP FORUM, 2015, 91 (02) : 347 - 377
  • [42] Burkholder–Davis–Gundy Inequalities in UMD Banach Spaces
    Ivan Yaroslavtsev
    Communications in Mathematical Physics, 2020, 379 : 417 - 459
  • [43] INITIAL ABSTRACT BOUNDARY VALUE PROBLEMS FOR PARABOLIC DIFFERENTIAL -OPERATOR EQUATIONS IN UMD BANACH SPACES
    Favini, Angelo
    Yakubov, Yakov
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2014, 40 : 152 - 171
  • [44] HIGHER ORDER ORDINARY DIFFERENTIAL-OPERATOR EQUATIONS ON THE WHOLE AXIS IN UMD BANACH SPACES
    Favini, Angelo
    Yakubov, Yakov
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2008, 21 (5-6) : 497 - 512
  • [45] Strongly Kreiss bounded operators in UMD Banach spaces
    Deng, Chenxi
    Lorist, Emiel
    Veraar, Mark
    SEMIGROUP FORUM, 2024, 108 (03) : 594 - 625
  • [46] A Class of Stochastic Differential Equations in Banach Spaces and Applications to Stochastic Partial Differential Equations
    Prevot, Claudia
    Roeckner, Michael
    CONCISE COURSE ON STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS, 2007, 1905 : 55 - 103
  • [47] Stochastic Volterra equations in Banach spaces and stochastic partial differential equation
    Zhang, Xicheng
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (04) : 1361 - 1425
  • [48] FOURIER MULTIPLIERS IN BANACH FUNCTION SPACES WITH UMD CONCAVIFICATIONS
    Amenta, Alex
    Lorist, Emiel
    Veraar, Mark
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (07) : 4837 - 4868
  • [49] Stochastic Evolution Equations in Hilbert Spaces
    Kruse, Raphael
    STRONG AND WEAK APPROXIMATION OF SEMILINEAR STOCHASTIC EVOLUTION EQUATIONS, 2014, 2093 : 11 - 49
  • [50] Strict Solutions to Stochastic Parabolic Evolution Equations in M-Type 2 Banach Spaces
    Ta, Ton Viet
    Yamamoto, Yoshitaka
    Yagi, Atsushi
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2018, 61 (02): : 191 - 217