Stochastic evolution equations in UMD Banach spaces

被引:108
|
作者
van Neerven, J. M. A. M. [2 ]
Veraar, M. C. [2 ]
Weis, L. [1 ]
机构
[1] Tech Univ Karlsruhe, Inst Math 1, D-76128 Karlsruhe, Germany
[2] Delft Univ Technol, Delft Inst Appl Math, NL-2600 GA Delft, Netherlands
关键词
parabolic stochastic evolution equations; UMD Banach spaces; stochastic convolutions; gamma-radonifying operators; L-gamma(2)-Lipschitz functions;
D O I
10.1016/j.jfa.2008.03.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss existence, uniqueness, and space-time Holder regularity for solutions of the parabolic stochastic evolution equation dU(t) = (AU(t) + F(t, U(t)))dt + B(t, U(t))dW(H)(t), t is an element of [0,T-0], U(0) = u(0), where A generates an analytic C-0-semigroup on a UMD, Banach space E and W-H is a cylindrical Brownian motion with values in a Hilbert space H. We prove that if the mappings F: [0, T] x E -> E and B: [0, T] x E -> L(H, E) satisfy suitable Lipschitz conditions and uo is F-0-measurable and bounded, then this problem has a unique mild solution, which has trajectories in C-lambda ([0, T]; D((-A)(theta)))) provided lambda >= 0 and theta >= 0 satisfy lambda + theta < 1/2. Various extensions are given and the results are applied to parabolic stochastic partial differential equations. (c) 2008 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:940 / 993
页数:54
相关论文
共 50 条
  • [21] Stochastic evolution equations in Banach spaces and applications to the Heath-Jarrow-Morton-Musiela equations
    Brzezniak, Zdzislaw
    Kok, Tayfun
    FINANCE AND STOCHASTICS, 2018, 22 (04) : 959 - 1006
  • [22] NONLINEAR EVOLUTION EQUATIONS IN BANACH SPACES
    CRANDALL, MG
    PAZY, A
    ISRAEL JOURNAL OF MATHEMATICS, 1972, 11 (01) : 57 - &
  • [23] ON STRONGLY ORTHOGONAL MARTINGALES IN UMD BANACH SPACES
    Yaroslavtsev, Ivan S.
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2021, 41 (01): : 153 - 171
  • [24] Tools for Malliavin Calculus in UMD Banach Spaces
    Matthijs Pronk
    Mark Veraar
    Potential Analysis, 2014, 40 : 307 - 344
  • [25] Maximal inequalities for stochastic convolutions in 2-smooth Banach spaces and applications to stochastic evolution equations
    van Neerven, Jan
    Veraar, Mark
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2185):
  • [26] A Clark-Ocone formula in UMD Banach spaces
    Maas, Jan
    Van Neerven, Jan
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 151 - 164
  • [27] Optimal regularity of stochastic evolution equations in M-type 2 Banach spaces
    Hong, Jialin
    Huang, Chuying
    Liu, Zhihui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (03) : 1955 - 1971
  • [28] Invariant measures for stochastic evolution equations in M-type 2 Banach spaces
    Zdzisław Brzeźniak
    Hongwei Long
    Isabel Simão
    Journal of Evolution Equations, 2010, 10 : 785 - 810
  • [29] Invariant measures for stochastic evolution equations in M-type 2 Banach spaces
    Brzezniak, Zdzislaw
    Long, Hongwei
    Simao, Isabel
    JOURNAL OF EVOLUTION EQUATIONS, 2010, 10 (04) : 785 - 810
  • [30] Asymptotics of evolution equations beyond Banach spaces
    B. Jacob
    S.-A. Wegner
    Semigroup Forum, 2015, 91 : 347 - 377