Stochastic evolution equations in UMD Banach spaces

被引:108
|
作者
van Neerven, J. M. A. M. [2 ]
Veraar, M. C. [2 ]
Weis, L. [1 ]
机构
[1] Tech Univ Karlsruhe, Inst Math 1, D-76128 Karlsruhe, Germany
[2] Delft Univ Technol, Delft Inst Appl Math, NL-2600 GA Delft, Netherlands
关键词
parabolic stochastic evolution equations; UMD Banach spaces; stochastic convolutions; gamma-radonifying operators; L-gamma(2)-Lipschitz functions;
D O I
10.1016/j.jfa.2008.03.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We discuss existence, uniqueness, and space-time Holder regularity for solutions of the parabolic stochastic evolution equation dU(t) = (AU(t) + F(t, U(t)))dt + B(t, U(t))dW(H)(t), t is an element of [0,T-0], U(0) = u(0), where A generates an analytic C-0-semigroup on a UMD, Banach space E and W-H is a cylindrical Brownian motion with values in a Hilbert space H. We prove that if the mappings F: [0, T] x E -> E and B: [0, T] x E -> L(H, E) satisfy suitable Lipschitz conditions and uo is F-0-measurable and bounded, then this problem has a unique mild solution, which has trajectories in C-lambda ([0, T]; D((-A)(theta)))) provided lambda >= 0 and theta >= 0 satisfy lambda + theta < 1/2. Various extensions are given and the results are applied to parabolic stochastic partial differential equations. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:940 / 993
页数:54
相关论文
共 50 条