Quantum Secure Multiparty Computation with Symmetric Boolean Functions

被引:3
|
作者
Cao, Hao [1 ,2 ]
Ma, Wenping [3 ]
Liu, Ge [3 ]
Lu, Liangdong [3 ,4 ]
Xue, Zheng-Yuan [5 ,6 ,7 ]
机构
[1] Anhui Sci & Technol Univ, Sch Informat & Network Engn, Anhui Prov Key Lab Anim Nutr Regulat & Hlth, Fengyang 233100, Peoples R China
[2] Huaibei Normal Univ, Sch Math Sci, Huaibei 235000, Peoples R China
[3] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[4] Air Force Engn Univ, Dept Basic Sci, Xian 710071, Peoples R China
[5] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[6] South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Peoples R China
[7] South China Normal Univ, Frontier Res Inst Phys, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
03; 67; Ac; Dd; 42; 50; Dv;
D O I
10.1088/0256-307X/37/5/050303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a class of n-variable Boolean functions which can be used to implement quantum secure multiparty computation. We also give an implementation of a special quantum secure multiparty computation protocol. An advantage of our protocol is that only 1 qubit is needed to compute the n-tuple pairwise and function, which is more efficient comparing with previous protocols. We demonstrate our protocol on the IBM quantum cloud platform, with a probability of correct output as high as 94.63%. Therefore, our protocol presents a promising generalization in realization of various secure multipartite quantum tasks.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Quantum Secure Multiparty Computation with Symmetric Boolean Functions
    曹浩
    马文平
    刘鸽
    吕良东
    薛正远
    [J]. Chinese Physics Letters., 2020, 37 (05) - 18
  • [2] Quantum Secure Multiparty Computation with Symmetric Boolean Functions
    曹浩
    马文平
    刘鸽
    吕良东
    薛正远
    [J]. Chinese Physics Letters, 2020, (05) : 14 - 18
  • [3] Unconditionally Secure Multiparty Computation for Symmetric Functions with Low Bottleneck Complexityy
    Eriguchi, Reo
    [J]. ADVANCES IN CRYPTOLOGY, ASIACRYPT 2023, PT I, 2023, 14438 : 335 - 368
  • [4] Secure multiparty quantum computation with few qubits
    Lipinska, Victoria
    Ribeiro, Jeremy
    Wehner, Stephanie
    [J]. PHYSICAL REVIEW A, 2020, 102 (02)
  • [5] Secure Multiparty Quantum Computation for Summation and Multiplication
    Run-hua Shi
    Yi Mu
    Hong Zhong
    Jie Cui
    Shun Zhang
    [J]. Scientific Reports, 6
  • [6] An efficient simulation for quantum secure multiparty computation
    Kartick Sutradhar
    Hari Om
    [J]. Scientific Reports, 11
  • [7] An efficient simulation for quantum secure multiparty computation
    Sutradhar, Kartick
    Om, Hari
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [8] Secure Multiparty Quantum Computation for Summation and Multiplication
    Shi, Run-hua
    Mu, Yi
    Zhong, Hong
    Cui, Jie
    Zhang, Shun
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [9] An efficient secure multiparty quantum computation protocol
    Lin Song
    Wang Ning
    Liu Xiao-Fen
    [J]. SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2023, 53 (04)
  • [10] Secure multiparty quantum computation for summation and data sorting
    Li, Xiaobing
    Xiong, Yunyan
    Zhang, Cai
    [J]. QUANTUM INFORMATION PROCESSING, 2024, 23 (09)