Quantum Secure Multiparty Computation with Symmetric Boolean Functions

被引:3
|
作者
Cao, Hao [1 ,2 ]
Ma, Wenping [3 ]
Liu, Ge [3 ]
Lu, Liangdong [3 ,4 ]
Xue, Zheng-Yuan [5 ,6 ,7 ]
机构
[1] Anhui Sci & Technol Univ, Sch Informat & Network Engn, Anhui Prov Key Lab Anim Nutr Regulat & Hlth, Fengyang 233100, Peoples R China
[2] Huaibei Normal Univ, Sch Math Sci, Huaibei 235000, Peoples R China
[3] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[4] Air Force Engn Univ, Dept Basic Sci, Xian 710071, Peoples R China
[5] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[6] South China Normal Univ, Sch Phys & Telecommun Engn, Guangzhou 510006, Peoples R China
[7] South China Normal Univ, Frontier Res Inst Phys, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
03; 67; Ac; Dd; 42; 50; Dv;
D O I
10.1088/0256-307X/37/5/050303
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a class of n-variable Boolean functions which can be used to implement quantum secure multiparty computation. We also give an implementation of a special quantum secure multiparty computation protocol. An advantage of our protocol is that only 1 qubit is needed to compute the n-tuple pairwise and function, which is more efficient comparing with previous protocols. We demonstrate our protocol on the IBM quantum cloud platform, with a probability of correct output as high as 94.63%. Therefore, our protocol presents a promising generalization in realization of various secure multipartite quantum tasks.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Secure Multiparty Multisets Computation
    Pan, Jiahao
    Dou, Jiawei
    [J]. International Journal of Network Security, 2023, 25 (03) : 425 - 430
  • [22] Efficient computation of algebraic immunity of symmetric Boolean functions
    Liu, Feng
    Feng, Keqin
    [J]. THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2007, 4484 : 318 - +
  • [23] Optimal Computation of Symmetric Boolean Functions in Collocated Networks
    Kowshik, Hemant
    Kumar, P. R.
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2013, 31 (04) : 639 - 654
  • [24] Optimal computation of symmetric Boolean functions in Tree networks
    Kowshik, Hemant
    Kumar, P. R.
    [J]. 2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1873 - 1877
  • [25] Secure multiparty computation of DNF
    Peng, Kun
    [J]. INFORMATION AND COMMUNICATIONS SECURITY, PROCEEDINGS, 2007, 4681 : 254 - 268
  • [26] Secure Multiparty Computation of Approximations
    Feigenbaum, Joan
    Ishai, Yuval
    Malkin, Tal
    Nissim, Kobbi
    Strauss, Martin J.
    Wright, Rebecca N.
    [J]. ACM TRANSACTIONS ON ALGORITHMS, 2006, 2 (03) : 435 - 472
  • [27] Secure Multiparty Graph Computation
    Kukkala, Varsha Bhat
    Iyengar, S. R. S.
    Saini, Jaspal Singh
    [J]. 2016 8TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORKS (COMSNETS), 2016,
  • [28] Scalable secure multiparty computation
    Damgard, Ivan
    Ishai, Yuval
    [J]. ADVANCES IN CRYPTOLOGY - CRYPTO 2006, PROCEEDINGS, 2006, 4117 : 501 - 520
  • [29] Representation of Boolean functions in terms of quantum computation
    Bogdanov, Yu, I
    Bogdanova, N. A.
    Fastovets, D., V
    Lukichev, V. F.
    [J]. INTERNATIONAL CONFERENCE ON MICRO- AND NANO-ELECTRONICS 2018, 2019, 11022
  • [30] Improved Secure Multiparty Computation with a Dishonest Majority via Quantum Means
    Li, Yan-Bing
    Wen, Qiao-Yan
    Qin, Su-Juan
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2013, 52 (01) : 199 - 205