An efficient simulation for quantum secure multiparty computation

被引:19
|
作者
Sutradhar, Kartick [1 ]
Om, Hari [1 ]
机构
[1] Indian Inst Technol ISM, Dept Comp Sci & Engn, Dhanbad 826004, Bihar, India
关键词
SUMMATION; DISCRETE;
D O I
10.1038/s41598-021-81799-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The quantum secure multiparty computation is one of the important properties of secure quantum communication. In this paper, we propose a quantum secure multiparty summation (QSMS) protocol based on (t, n) threshold approach, which can be used in many complex quantum operations. To make this protocol secure and realistic, we combine both the classical and quantum phenomena. The existing protocols have some security and efficiency issues because they use (n, n) threshold approach, where all the honest players need to perform the quantum multiparty summation protocol. We however use a (t, n) threshold approach, where only t honest players need to compute the quantum summation protocol. Compared to other protocols our proposed protocol is more cost-effective, realistic, and secure. We also simulate it using the IBM corporation's online quantum computer, or quantum experience.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] An efficient simulation for quantum secure multiparty computation
    Kartick Sutradhar
    Hari Om
    [J]. Scientific Reports, 11
  • [2] An efficient secure multiparty quantum computation protocol
    Lin Song
    Wang Ning
    Liu Xiao-Fen
    [J]. SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2023, 53 (04)
  • [3] Round Efficient Secure Multiparty Quantum Computation with Identifiable Abort
    Alon, Bar
    Chung, Hao
    Chung, Kai-Min
    Huang, Mi-Ying
    Lee, Yi
    Shen, Yu-Ching
    [J]. ADVANCES IN CRYPTOLOGY (CRYPTO 2021), PT I, 2021, 12825 : 436 - 466
  • [4] Efficient Secure Multiparty Subset Computation
    Zhou, Sufang
    Li, Shundong
    Dou, Jiawei
    Geng, Yaling
    Liu, Xin
    [J]. SECURITY AND COMMUNICATION NETWORKS, 2017,
  • [5] Secure multiparty quantum computation with few qubits
    Lipinska, Victoria
    Ribeiro, Jeremy
    Wehner, Stephanie
    [J]. PHYSICAL REVIEW A, 2020, 102 (02)
  • [6] Secure Multiparty Quantum Computation for Summation and Multiplication
    Run-hua Shi
    Yi Mu
    Hong Zhong
    Jie Cui
    Shun Zhang
    [J]. Scientific Reports, 6
  • [7] Efficient Maliciously Secure Multiparty Computation for RAM
    Keller, Marcel
    Yanai, Avishay
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2018, PT III, 2018, 10822 : 91 - 124
  • [8] Secure Multiparty Quantum Computation for Summation and Multiplication
    Shi, Run-hua
    Mu, Yi
    Zhong, Hong
    Cui, Jie
    Zhang, Shun
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [9] An Efficient Framework for Unconditionally Secure Multiparty Computation
    Choudhury, Ashish
    Patra, Arpita
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (01) : 428 - 468
  • [10] Efficient Secure Multiparty Computation with Identifiable Abort
    Baum, Carsten
    Orsini, Emmanuela
    Scholl, Peter
    [J]. THEORY OF CRYPTOGRAPHY, TCC 2016-B, PT I, 2016, 9985 : 461 - 490