Probe Incompatibility in Multiparameter Noisy Quantum Metrology

被引:22
|
作者
Albarelli, Francesco [1 ,2 ]
Demkowicz-Dobrzanski, Rafal [1 ]
机构
[1] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
关键词
ULTIMATE PRECISION LIMIT;
D O I
10.1103/PhysRevX.12.011039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive fundamental bounds on the maximal achievable precision in multiparameter noisy quantum metrology, valid under the most general entanglement-assisted adaptive strategy, which are tighter than the bounds obtained by a direct use of single-parameter results. This allows us to study the issue of the optimal probe incompatibility in the simultaneous estimation of multiple parameters in generic noisy channels, while so far the issue has been studied mostly in effectively noiseless scenarios (where the Heisenberg scaling is possible). We apply our results to the estimation of both unitary and noise parameters and indicate models where the fundamental probe incompatibility is present. In particular, we show that in lossy multiple-arm interferometry the probe incompatibility is as strong as in the noiseless scenario, reducing the potential advantage of simultaneous estimation to a constant factor. Finally, going beyond the multiparameter estimation paradigm, we introduce the concept of random quantum sensing and show how the tools developed may be applied to multiple-channel discrimination problems. As an illustration, we provide a simple proof of the loss of the quadratic advantage of the time-continuous Grover algorithm in the presence of dephasing or erasure noise.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Noisy quantum metrology with the assistance of indefinite causal order
    Chapeau-Blondeau, Francois
    PHYSICAL REVIEW A, 2021, 103 (03)
  • [42] Entanglement-enhanced quantum metrology in a noisy environment
    Wang, Kunkun
    Wang, Xiaoping
    Zhan, Xiang
    Bian, Zhihao
    Li, Jian
    Sanders, Barry C.
    Xue, Peng
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [43] Noisy Quantum Metrology Enhanced by Continuous Nondemolition Measurement
    Rossi, Matteo A. C.
    Albarelli, Francesco
    Tamascelli, Dario
    Genoni, Marco G.
    PHYSICAL REVIEW LETTERS, 2020, 125 (20)
  • [44] Optimal and Variational Multiparameter Quantum Metrology and Vector-Field Sensing
    Kaubruegger, Raphael
    Shankar, Athreya
    V. Vasilyev, Denis
    Zoller, Peter
    PRX QUANTUM, 2023, 4 (02):
  • [45] Multiparameter quantum metrology of incoherent point sources: Towards realistic superresolution
    Rehacek, J.
    Hradil, Z.
    Stoklasa, B.
    Paur, M.
    Grover, J.
    Krzic, A.
    Sanchez-Soto, L. L.
    PHYSICAL REVIEW A, 2017, 96 (06)
  • [46] Evaluating the Holevo Cramer-Rao Bound for Multiparameter Quantum Metrology
    Albarelli, Francesco
    Friel, Jamie F.
    Datta, Animesh
    PHYSICAL REVIEW LETTERS, 2019, 123 (20)
  • [47] Estimating phase with a random generator: Strategies and resources in multiparameter quantum metrology
    Yousefjani, Rozhin
    Nichols, Rosanna
    Salimi, Shahriar
    Adesso, Gerardo
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [48] Quantum metrology to probe atomic parity nonconservation
    Mandal, P.
    Mukherjee, M.
    PHYSICAL REVIEW A, 2010, 82 (05):
  • [49] Quantum Metrology with a Scanning Probe Atom Interferometer
    Ockeloen, Caspar F.
    Schmied, Roman
    Riedel, Max F.
    Treutlein, Philipp
    PHYSICAL REVIEW LETTERS, 2013, 111 (14)
  • [50] Dynamical decoupling leads to improved scaling in noisy quantum metrology
    Sekatski, Pavel
    Skotiniotis, Michalis
    Duer, Wolfgang
    NEW JOURNAL OF PHYSICS, 2016, 18