Probe Incompatibility in Multiparameter Noisy Quantum Metrology

被引:22
|
作者
Albarelli, Francesco [1 ,2 ]
Demkowicz-Dobrzanski, Rafal [1 ]
机构
[1] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
关键词
ULTIMATE PRECISION LIMIT;
D O I
10.1103/PhysRevX.12.011039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive fundamental bounds on the maximal achievable precision in multiparameter noisy quantum metrology, valid under the most general entanglement-assisted adaptive strategy, which are tighter than the bounds obtained by a direct use of single-parameter results. This allows us to study the issue of the optimal probe incompatibility in the simultaneous estimation of multiple parameters in generic noisy channels, while so far the issue has been studied mostly in effectively noiseless scenarios (where the Heisenberg scaling is possible). We apply our results to the estimation of both unitary and noise parameters and indicate models where the fundamental probe incompatibility is present. In particular, we show that in lossy multiple-arm interferometry the probe incompatibility is as strong as in the noiseless scenario, reducing the potential advantage of simultaneous estimation to a constant factor. Finally, going beyond the multiparameter estimation paradigm, we introduce the concept of random quantum sensing and show how the tools developed may be applied to multiple-channel discrimination problems. As an illustration, we provide a simple proof of the loss of the quadratic advantage of the time-continuous Grover algorithm in the presence of dephasing or erasure noise.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Investigating quantum metrology in noisy channels
    B. J. Falaye
    A. G. Adepoju
    A. S. Aliyu
    M. M. Melchor
    M. S. Liman
    O. J. Oluwadare
    M. D. González-Ramírez
    K. J. Oyewumi
    Scientific Reports, 7
  • [22] Investigating quantum metrology in noisy channels
    Falaye, B. J.
    Adepoju, A. G.
    Aliyu, A. S.
    Melchor, M. M.
    Liman, M. S.
    Oluwadare, O. J.
    Gonzalez-Ramirez, M. D.
    Oyewumi, K. J.
    SCIENTIFIC REPORTS, 2017, 7
  • [23] Multiparameter quantum metrology with discrete-time quantum walks
    Annabestani, Mostafa
    Hassani, Majid
    Tamascelli, Dario
    Paris, Matteo G. A.
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [24] On the properties of the asymptotic incompatibility measure in multiparameter quantum estimation
    Candeloro, Alessandro
    Paris, Matteo G. A.
    Genoni, Marco G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (48)
  • [25] Limits of Noisy Quantum Metrology with Restricted Quantum Controls
    Zhou, Sisi
    Physical Review Letters, 2024, 133 (17)
  • [26] Incompatibility measures in multiparameter quantum estimation under hierarchical quantum measurements
    Chen, Hongzhen
    Chen, Yu
    Yuan, Haidong
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [27] Quantum multiparameter metrology with generalized entangled coherent state
    Liu, Jing
    Lu, Xiao-Ming
    Sun, Zhe
    Wang, Xiaoguang
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (11)
  • [28] Quantum multiparameter estimation and metrology-preface Preface
    Datta, Animesh
    Demkowicz-Dobrzanski, Rafal
    Liu, Jing
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (46)
  • [29] Precision bounds for noisy nonlinear quantum metrology
    Zwierz, Marcin
    Wiseman, Howard M.
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [30] Optimal Protocols for Quantum Metrology with Noisy Measurements
    Zhou, Sisi
    Michalakis, Spyridon
    Gefen, Tuvia
    PRX QUANTUM, 2023, 4 (04):