Probe Incompatibility in Multiparameter Noisy Quantum Metrology

被引:22
|
作者
Albarelli, Francesco [1 ,2 ]
Demkowicz-Dobrzanski, Rafal [1 ]
机构
[1] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
关键词
ULTIMATE PRECISION LIMIT;
D O I
10.1103/PhysRevX.12.011039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive fundamental bounds on the maximal achievable precision in multiparameter noisy quantum metrology, valid under the most general entanglement-assisted adaptive strategy, which are tighter than the bounds obtained by a direct use of single-parameter results. This allows us to study the issue of the optimal probe incompatibility in the simultaneous estimation of multiple parameters in generic noisy channels, while so far the issue has been studied mostly in effectively noiseless scenarios (where the Heisenberg scaling is possible). We apply our results to the estimation of both unitary and noise parameters and indicate models where the fundamental probe incompatibility is present. In particular, we show that in lossy multiple-arm interferometry the probe incompatibility is as strong as in the noiseless scenario, reducing the potential advantage of simultaneous estimation to a constant factor. Finally, going beyond the multiparameter estimation paradigm, we introduce the concept of random quantum sensing and show how the tools developed may be applied to multiple-channel discrimination problems. As an illustration, we provide a simple proof of the loss of the quadratic advantage of the time-continuous Grover algorithm in the presence of dephasing or erasure noise.
引用
收藏
页数:28
相关论文
共 50 条
  • [11] Quantum Metrology for Noisy Systems
    Escher, B. M.
    de Matos Filho, R. L.
    Davidovich, L.
    BRAZILIAN JOURNAL OF PHYSICS, 2011, 41 (4-6) : 229 - 247
  • [12] Fundamental noisy multiparameter quantum bounds
    Shibdas Roy
    Scientific Reports, 9
  • [13] Fundamental noisy multiparameter quantum bounds
    Roy, Shibdas
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [14] Bayesian multiparameter quantum metrology with limited data
    Rubio, Jesus
    Dunningham, Jacob
    PHYSICAL REVIEW A, 2020, 101 (03)
  • [15] Multiparameter critical quantum metrology with impurity probes
    Mihailescu, George
    Bayat, Abolfazl
    Campbell, Steve
    Mitchell, Andrew K.
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (03):
  • [16] Intrinsic Sensitivity Limits for Multiparameter Quantum Metrology
    Goldberg, Aaron Z.
    Sanchez-Soto, Luis L.
    Ferretti, Hugo
    PHYSICAL REVIEW LETTERS, 2021, 127 (11)
  • [17] Experimental multiparameter quantum metrology in adaptive regime
    Valeri, Mauro
    Cimini, Valeria
    Piacentini, Simone
    Ceccarelli, Francesco
    Polino, Emanuele
    Hoch, Francesco
    Bizzarri, Gabriele
    Corrielli, Giacomo
    Spagnolo, Nicolo
    Osellame, Roberto
    Sciarrino, Fabio
    PHYSICAL REVIEW RESEARCH, 2023, 5 (01):
  • [18] QUANTUM METROLOGY Beauty and the noisy beast
    Maccone, Lorenzo
    Giovannetti, Vittorio
    NATURE PHYSICS, 2011, 7 (05) : 376 - 377
  • [19] Practical quantum metrology in noisy environments
    Nichols, Rosanna
    Bromley, Thomas R.
    Correa, Luis A.
    Adesso, Gerardo
    PHYSICAL REVIEW A, 2016, 94 (04)
  • [20] Quantum Metrology of Noisy Spreading Channels
    Gorecki, Wojciech
    Riccardi, Alberto
    Maccone, Lorenzo
    PHYSICAL REVIEW LETTERS, 2022, 129 (24)