Probe Incompatibility in Multiparameter Noisy Quantum Metrology

被引:22
|
作者
Albarelli, Francesco [1 ,2 ]
Demkowicz-Dobrzanski, Rafal [1 ]
机构
[1] Univ Warsaw, Fac Phys, PL-02093 Warsaw, Poland
[2] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
关键词
ULTIMATE PRECISION LIMIT;
D O I
10.1103/PhysRevX.12.011039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive fundamental bounds on the maximal achievable precision in multiparameter noisy quantum metrology, valid under the most general entanglement-assisted adaptive strategy, which are tighter than the bounds obtained by a direct use of single-parameter results. This allows us to study the issue of the optimal probe incompatibility in the simultaneous estimation of multiple parameters in generic noisy channels, while so far the issue has been studied mostly in effectively noiseless scenarios (where the Heisenberg scaling is possible). We apply our results to the estimation of both unitary and noise parameters and indicate models where the fundamental probe incompatibility is present. In particular, we show that in lossy multiple-arm interferometry the probe incompatibility is as strong as in the noiseless scenario, reducing the potential advantage of simultaneous estimation to a constant factor. Finally, going beyond the multiparameter estimation paradigm, we introduce the concept of random quantum sensing and show how the tools developed may be applied to multiple-channel discrimination problems. As an illustration, we provide a simple proof of the loss of the quadratic advantage of the time-continuous Grover algorithm in the presence of dephasing or erasure noise.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Compatibility in multiparameter quantum metrology
    Ragy, Sammy
    Jarzyna, Marcin
    Demkowicz-Dobrzanski, Rafal
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [2] Multiparameter quantum critical metrology
    Di Fresco, Giovanni
    Spagnolo, Bernardo
    Valenti, Davide
    Carollo, Angelo
    SCIPOST PHYSICS, 2022, 13 (04):
  • [3] Multiparameter Gaussian quantum metrology
    Nichols, Rosanna
    Liuzzo-Scorpo, Pietro
    Knott, Paul A.
    Adesso, Gerardo
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [4] Finding the optimal probe state for multiparameter quantum metrology using conic programming
    Hayashi, Masahito
    Ouyang, Yingkai
    npj Quantum Information, 2024, 10 (01)
  • [5] Improving Quantum Metrology via Purifying and Distilling Noisy Probe States
    Zhao, Jun-Long
    Kong, Fan-Zhen
    Chu, Wen-Jing
    Yang, Ming
    Cao, Zhuo-Liang
    ANNALEN DER PHYSIK, 2019, 531 (09)
  • [6] Multiparameter quantum metrology with postselection measurements
    Ho, Le Bin
    Kondo, Yasushi
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (01)
  • [7] Generalizable control for multiparameter quantum metrology
    Xu, Han
    Wang, Lingna
    Yuan, Haidong
    Wang, Xin
    PHYSICAL REVIEW A, 2021, 103 (04)
  • [8] Sensitivity Bounds for Multiparameter Quantum Metrology
    Gessner, Manuel
    Pezze, Luca
    Smerzi, Augusto
    PHYSICAL REVIEW LETTERS, 2018, 121 (13)
  • [9] Multiparameter Quantum Metrology with Bright Solitons
    Alodjants A.P.
    Tsarev D.V.
    Osipov S.V.
    Podoshvedov M.S.
    Kulik S.P.
    Bulletin of the Russian Academy of Sciences: Physics, 2024, 88 (06) : 815 - 821
  • [10] Quantum Metrology for Noisy Systems
    B. M. Escher
    R. L. de Matos Filho
    L. Davidovich
    Brazilian Journal of Physics, 2011, 41 : 229 - 247