Kernel Parameter Optimization for KFDA Based on the Maximum Margin Criterion

被引:0
|
作者
Zhao, Yue
Ma, Jinwen [1 ]
机构
[1] Peking Univ, Sch Math Sci, Dept Informat Sci, Beijing 100871, Peoples R China
来源
关键词
Kernel parameter optimization; Maximum margin criterion; Feature extraction; Kernel Fisher discriminant analysis (KFDA); Affinity matrix;
D O I
10.1007/978-3-319-12436-0_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel parameters optimization is one of the most challenging problems on kernel Fisher discriminant analysis (KFDA). In this paper, a simple and effective KFDA kernel parameters optimization criterion is proposed on the basis of the maximum margin criterion (MMC) that maximize the distances between any two classes. Actually, this MMC-based criterion is applied to the kernel parameters optimization on KFDA and KFDA with Locally Linear Embedding affinity matrix (KFDA-LLE). It is demonstrated by the experiments on six real-world multiclass datasets that, in comparison with two other criteria, our MMC-based criterion can detect the optimal KFDA kernel parameters more accurately in the cases of both RBF kernel and polynomial kernel.
引用
收藏
页码:330 / 337
页数:8
相关论文
共 50 条
  • [41] Maximum margin and global criterion based-recursive feature selection
    Ding, Xiaojian
    Li, Yi
    Chen, Shilin
    [J]. Neural Networks, 2024, 169 : 597 - 606
  • [42] Maximum margin and global criterion based-recursive feature selection
    Ding, Xiaojian
    Li, Yi
    Chen, Shilin
    [J]. NEURAL NETWORKS, 2024, 169 : 597 - 606
  • [43] Spare L1-norm-based maximum margin criterion
    Lu, Gui-Fu
    Tang, Ganyi
    Zou, Jian
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 38 : 11 - 17
  • [44] Early Image Fire-Detection Based On Maximum Margin Criterion
    Yuan, Jie
    Hu, Haibing
    Yuan, Wei
    Jia, Yang
    Zhang, Yongming
    [J]. MECHANICAL ENGINEERING AND INSTRUMENTATION, 2014, 526 : 324 - 329
  • [45] Maximum margin based semi-supervised spectral kernel learning
    Xu, Zenglin
    Zhu, Jianke
    Lyu, Michael R.
    King, Irwin
    [J]. 2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 418 - 423
  • [46] Online Gradient Descent for Kernel-Based Maximum Correntropy Criterion
    Wang, Baobin
    Hu, Ting
    [J]. ENTROPY, 2019, 21 (07)
  • [47] Robust Ellipse Fitting With Laplacian Kernel Based Maximum Correntropy Criterion
    Hu, Chenlong
    Wang, Gang
    Ho, K. C.
    Liang, Junli
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3127 - 3141
  • [48] KERNEL-BASED MAXIMUM CORRENTROPY CRITERION WITH GRADIENT DESCENT METHOD
    Hu, Ting
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (08) : 4159 - 4177
  • [49] ADAPTIVE MAXIMUM MARGIN CRITERION FOR IMAGE CLASSIFICATION
    Lu, Jiwen
    Tan, Yap-Peng
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2011,
  • [50] Graph Maximum Margin Criterion for Face Recognition
    Lu, Gui-Fu
    Wang, Yong
    Zou, Jian
    [J]. NEURAL PROCESSING LETTERS, 2016, 44 (02) : 387 - 405