Kernel Parameter Optimization for KFDA Based on the Maximum Margin Criterion

被引:0
|
作者
Zhao, Yue
Ma, Jinwen [1 ]
机构
[1] Peking Univ, Sch Math Sci, Dept Informat Sci, Beijing 100871, Peoples R China
来源
关键词
Kernel parameter optimization; Maximum margin criterion; Feature extraction; Kernel Fisher discriminant analysis (KFDA); Affinity matrix;
D O I
10.1007/978-3-319-12436-0_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel parameters optimization is one of the most challenging problems on kernel Fisher discriminant analysis (KFDA). In this paper, a simple and effective KFDA kernel parameters optimization criterion is proposed on the basis of the maximum margin criterion (MMC) that maximize the distances between any two classes. Actually, this MMC-based criterion is applied to the kernel parameters optimization on KFDA and KFDA with Locally Linear Embedding affinity matrix (KFDA-LLE). It is demonstrated by the experiments on six real-world multiclass datasets that, in comparison with two other criteria, our MMC-based criterion can detect the optimal KFDA kernel parameters more accurately in the cases of both RBF kernel and polynomial kernel.
引用
收藏
页码:330 / 337
页数:8
相关论文
共 50 条
  • [31] TWO DIMENSIONAL MAXIMUM MARGIN CRITERION
    Gu, Quanquan
    Zhou, Jie
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 1621 - 1624
  • [32] SPARSE KERNEL MAXIMUM MARGIN CLUSTERING
    Wu, Ji
    Zhang, Xiao-Lei
    NEURAL NETWORK WORLD, 2011, 21 (06) : 551 - 573
  • [33] An efficient Gaussian kernel optimization based on centered kernel polarization criterion
    Tian, Meng
    Wang, Wenjian
    INFORMATION SCIENCES, 2015, 322 : 133 - 149
  • [34] Kernel Parameter Optimization for Kernel-based LDA methods
    Huang, Jian
    Chen, Xiaoming
    Yuen, P. C.
    Zhang, Jun
    Chen, W. S.
    Lai, J. H.
    2008 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-8, 2008, : 3840 - 3846
  • [35] Incremental maximum margin criterion based on eigenvalue decomposition updating algorithm
    Gui-Fu Lu
    Jian Zou
    Machine Vision and Applications, 2015, 26 : 807 - 817
  • [36] Quaternion Based Maximum Margin Criterion Method for Color Face Recognition
    Zhonghua Liu
    Yong Qiu
    Yali Peng
    Jiexin Pu
    Xiaoli Zhang
    Neural Processing Letters, 2017, 45 : 913 - 923
  • [37] Contextual-distance metric based Laplacian maximum margin criterion
    Gao J.
    Wang S.-T.
    Wang X.-M.
    Zidonghua Xuebao/Acta Automatica Sinica, 2010, 36 (12): : 1661 - 1673
  • [38] Quaternion Based Maximum Margin Criterion Method for Color Face Recognition
    Liu, Zhonghua
    Qiu, Yong
    Peng, Yali
    Pu, Jiexin
    Zhang, Xiaoli
    NEURAL PROCESSING LETTERS, 2017, 45 (03) : 913 - 923
  • [39] Incremental maximum margin criterion based on eigenvalue decomposition updating algorithm
    Lu, Gui-Fu
    Zou, Jian
    MACHINE VISION AND APPLICATIONS, 2015, 26 (06) : 807 - 817
  • [40] Sub-Pattern Based Maximum Margin Criterion for Face Recognition
    Ai, Xin
    Wang, Yang
    Zheng, Xiaojuan
    2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 218 - 222