Kernel Parameter Optimization for KFDA Based on the Maximum Margin Criterion

被引:0
|
作者
Zhao, Yue
Ma, Jinwen [1 ]
机构
[1] Peking Univ, Sch Math Sci, Dept Informat Sci, Beijing 100871, Peoples R China
来源
关键词
Kernel parameter optimization; Maximum margin criterion; Feature extraction; Kernel Fisher discriminant analysis (KFDA); Affinity matrix;
D O I
10.1007/978-3-319-12436-0_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel parameters optimization is one of the most challenging problems on kernel Fisher discriminant analysis (KFDA). In this paper, a simple and effective KFDA kernel parameters optimization criterion is proposed on the basis of the maximum margin criterion (MMC) that maximize the distances between any two classes. Actually, this MMC-based criterion is applied to the kernel parameters optimization on KFDA and KFDA with Locally Linear Embedding affinity matrix (KFDA-LLE). It is demonstrated by the experiments on six real-world multiclass datasets that, in comparison with two other criteria, our MMC-based criterion can detect the optimal KFDA kernel parameters more accurately in the cases of both RBF kernel and polynomial kernel.
引用
收藏
页码:330 / 337
页数:8
相关论文
共 50 条
  • [21] Maximum Margin Criterion based Band Extraction of Hyperspectral Imagery
    Datta, Aloke
    Ghosh, Susmita
    Ghosh, Ashish
    [J]. 2014 FOURTH INTERNATIONAL CONFERENCE OF EMERGING APPLICATIONS OF INFORMATION TECHNOLOGY (EAIT), 2014, : 300 - 304
  • [22] Discriminant maximum margin criterion based on locality preserving projections
    Lin, Ke-Zheng
    Wang, Hui-Xin
    Bu, Xue-Na
    Lin, Sheng
    [J]. Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2010, 23 (02): : 178 - 185
  • [23] Fuzzy bidirectional maximum margin criterion based face recognition
    Du, Haishun
    Li, Min
    Zhang, Fan
    Zhou, Funa
    [J]. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2011, 32 (05): : 1077 - 1082
  • [24] Local sub-domains based maximum margin criterion
    Gao, Jun
    Huang, Li-Li
    Wang, Shi-Tong
    [J]. Kongzhi yu Juece/Control and Decision, 2014, 29 (05): : 827 - 832
  • [25] Feature extraction based on Laplacian bidirectional maximum margin criterion
    Yang, Wankou
    Wang, Jianguo
    Ren, Mingwu
    Yang, Jingyu
    Zhang, Lei
    Liu, Guanghai
    [J]. PATTERN RECOGNITION, 2009, 42 (11) : 2327 - 2334
  • [26] Nonlinear face recognition based on maximum average margin criterion
    Zhang, BC
    Chen, XL
    Shan, SG
    Gao, W
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 554 - 559
  • [27] Feature Extraction Based on Maximum Nearest Subspace Margin Criterion
    Chen, Yi
    Li, Zhenzhen
    Jin, Zhong
    [J]. NEURAL PROCESSING LETTERS, 2013, 37 (03) : 355 - 375
  • [28] Feature Extraction Based on Maximum Nearest Subspace Margin Criterion
    Yi Chen
    Zhenzhen Li
    Zhong Jin
    [J]. Neural Processing Letters, 2013, 37 : 355 - 375
  • [29] Parameter Estimation for α-GMM Based on Maximum Likelihood Criterion
    Wu, Dalei
    [J]. NEURAL COMPUTATION, 2009, 21 (06) : 1776 - 1795
  • [30] Maximum margin criterion with tensor representation
    Hu, Rong-Xiang
    Jia, Wei
    Huang, De-Shuang
    Lei, Ying-Ke
    [J]. NEUROCOMPUTING, 2010, 73 (10-12) : 1541 - 1549