Kernel Parameter Optimization for KFDA Based on the Maximum Margin Criterion

被引:0
|
作者
Zhao, Yue
Ma, Jinwen [1 ]
机构
[1] Peking Univ, Sch Math Sci, Dept Informat Sci, Beijing 100871, Peoples R China
来源
关键词
Kernel parameter optimization; Maximum margin criterion; Feature extraction; Kernel Fisher discriminant analysis (KFDA); Affinity matrix;
D O I
10.1007/978-3-319-12436-0_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Kernel parameters optimization is one of the most challenging problems on kernel Fisher discriminant analysis (KFDA). In this paper, a simple and effective KFDA kernel parameters optimization criterion is proposed on the basis of the maximum margin criterion (MMC) that maximize the distances between any two classes. Actually, this MMC-based criterion is applied to the kernel parameters optimization on KFDA and KFDA with Locally Linear Embedding affinity matrix (KFDA-LLE). It is demonstrated by the experiments on six real-world multiclass datasets that, in comparison with two other criteria, our MMC-based criterion can detect the optimal KFDA kernel parameters more accurately in the cases of both RBF kernel and polynomial kernel.
引用
收藏
页码:330 / 337
页数:8
相关论文
共 50 条
  • [1] MULTIPLE KERNEL MAXIMUM MARGIN CRITERION
    Gu, Quanquan
    Zhou, Jie
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 2049 - 2052
  • [2] An improving method of face recognition based on kernel maximum margin criterion
    Li, Guo-Dong
    Li, Yong-Zhi
    [J]. Jiangsu Daxue Xuebao (Ziran Kexue Ban) / Journal of Jiangsu University (Natural Science Edition), 2008, 29 (05): : 441 - 444
  • [3] Kernel-based feature extraction under maximum margin criterion
    Wang, Jiangping
    Fan, Jieyan
    Li, Huanghuang
    Wu, Dapeng
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2012, 23 (01) : 53 - 62
  • [4] An efficient feature extraction method based on kernel maximum margin criterion
    Li, Yong-Zhi
    Yang, Jing-Yu
    Li, Guo-Dong
    Qiu, Zhao-Cheng
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2006, 13 : 1254 - 1258
  • [5] A New Hardware Trojan Detection Method Based on Kernel Maximum Margin Criterion
    Department of Information Engineering, Ordnance Engineering College, Shijiazhuang
    Hebei
    050003, China
    [J]. Tien Tzu Hsueh Pao, 1600, 3 (656-661):
  • [6] Feature extraction using kernel Laplacian maximum margin criterion
    Sun, Zhongxi
    Sun, Changyin
    Yang, Wankou
    Wang, Zhenyu
    [J]. OPTICAL ENGINEERING, 2012, 51 (06)
  • [7] A improved method of face recognition by kernel maximum margin criterion
    Li, Yong-Zhi
    Yang, Jing-Yu
    [J]. ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2007, : 501 - +
  • [8] A Fuzzy Kernel Maximum Margin Criterion for Image Feature Extraction
    Xuan, Shibin
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [9] Parameter Optimization of SVM Based on Maximum Variance Entropy Criterion
    Liao, Jian
    Zhou, Shaolei
    Shi, Xianjun
    [J]. MECHATRONICS, ROBOTICS AND AUTOMATION, PTS 1-3, 2013, 373-375 : 1053 - 1059
  • [10] Terrain Classification of Hyperspectral Remote Sensing Images Based on Kernel Maximum Margin Criterion
    Liu, Jing
    Qiu, Cheng-cheng
    Liu, Yi
    [J]. 2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,