Bands and gaps in Nekrasov partition function

被引:16
|
作者
Gorsky, A. [2 ,3 ]
Milekhin, A. [1 ,3 ,4 ]
Sopenko, N. [1 ,2 ,3 ]
机构
[1] Inst Theoret & Expt Phys, B Cheryomushkinskaya 25, Moscow 117218, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, B Karetnyi 19, Moscow 127051, Russia
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2018年 / 01期
基金
俄罗斯科学基金会;
关键词
Nonperturbative Effects; Supersymmetric Effective Theories; Supersymmetric Gauge Theory; LAMBDA-LESS-THAN-0; QUANTUM-GRAVITY; INTEGRABLE SPIN CHAINS; SUSY FIELD-THEORIES; YANG-MILLS THEORY; GAUGE-THEORIES; COADJOINT ORBITS; 2+1 DIMENSIONS; SUPERSYMMETRIC VACUA; VIRASORO GROUP; SYSTEMS;
D O I
10.1007/JHEP01(2018)133
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss the effective twisted superpotentials of 2d N = (2, 2) theories arising upon the reduction of 4d N = 2 gauge theories on the Omega-deformed cigar-like geometry. We explain field-theoretic origins of the gaps in the spectrum in the corresponding quantum mechanical (QM) systems. We find local 2d descriptions of the physics near these gaps by resumming the non-perturbative part of the twisted superpotential and discuss arising wall-crossing phenomena. The interpretation of the associated phenomena in the classical Liouville theory and in the scattering of two heavy states in AdS(3) gravity is suggested. Some comments concerning a possible interpretation of the band structure in QM in terms of the Schwinger monopole-pair production in 4d are presented.
引用
收藏
页数:43
相关论文
共 50 条
  • [41] On the restricted partition function
    Mircea Cimpoeaş
    Florin Nicolae
    The Ramanujan Journal, 2018, 47 : 565 - 588
  • [42] On the restricted partition function
    Cimpoeas, Mircea
    Nicolae, Florin
    RAMANUJAN JOURNAL, 2018, 47 (03): : 565 - 588
  • [43] A partition function estimator
    Chiang, Ying-Chih
    Otto, Frank
    Essex, Jonathan W.
    JOURNAL OF CHEMICAL PHYSICS, 2025, 162 (02):
  • [44] PARTITION FUNCTION WITH SINGULARITIES
    FULINSKI, A
    PHYSICS LETTERS A, 1967, A 25 (08) : 585 - &
  • [45] Parity of the partition function
    Ono, Ken
    ADVANCES IN MATHEMATICS, 2010, 225 (01) : 349 - 366
  • [46] On the parity of the partition function
    Robbins, N
    FIBONACCI QUARTERLY, 2004, 42 (04): : 368 - 369
  • [47] Arithmetic of the partition function
    Ono, K
    SPECIAL FUNCTIONS 2000: CURRENT PERSPECTIVE AND FUTURE DIRECTIONS, 2001, 30 : 243 - 253
  • [48] On the series for the partition function
    Lehmer, D. H.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1938, 43 (1-3) : 271 - 295
  • [49] Congruences of the Partition Function
    Yang, Yifan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (14) : 3261 - 3288
  • [50] On a certain partition function
    Niven, I
    AMERICAN JOURNAL OF MATHEMATICS, 1940, 62 : 353 - 364