Bands and gaps in Nekrasov partition function

被引:16
|
作者
Gorsky, A. [2 ,3 ]
Milekhin, A. [1 ,3 ,4 ]
Sopenko, N. [1 ,2 ,3 ]
机构
[1] Inst Theoret & Expt Phys, B Cheryomushkinskaya 25, Moscow 117218, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, B Karetnyi 19, Moscow 127051, Russia
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2018年 / 01期
基金
俄罗斯科学基金会;
关键词
Nonperturbative Effects; Supersymmetric Effective Theories; Supersymmetric Gauge Theory; LAMBDA-LESS-THAN-0; QUANTUM-GRAVITY; INTEGRABLE SPIN CHAINS; SUSY FIELD-THEORIES; YANG-MILLS THEORY; GAUGE-THEORIES; COADJOINT ORBITS; 2+1 DIMENSIONS; SUPERSYMMETRIC VACUA; VIRASORO GROUP; SYSTEMS;
D O I
10.1007/JHEP01(2018)133
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss the effective twisted superpotentials of 2d N = (2, 2) theories arising upon the reduction of 4d N = 2 gauge theories on the Omega-deformed cigar-like geometry. We explain field-theoretic origins of the gaps in the spectrum in the corresponding quantum mechanical (QM) systems. We find local 2d descriptions of the physics near these gaps by resumming the non-perturbative part of the twisted superpotential and discuss arising wall-crossing phenomena. The interpretation of the associated phenomena in the classical Liouville theory and in the scattering of two heavy states in AdS(3) gravity is suggested. Some comments concerning a possible interpretation of the band structure in QM in terms of the Schwinger monopole-pair production in 4d are presented.
引用
收藏
页数:43
相关论文
共 50 条
  • [31] Partition Identities Involving Gaps and Weights, II
    Krishnaswami Alladi
    The Ramanujan Journal, 1998, 2 : 21 - 37
  • [32] Partition by a Function
    Petrosyan, Armenak
    Stong, Richard
    AMERICAN MATHEMATICAL MONTHLY, 2011, 118 (01): : 91 - 91
  • [33] Partition-Nekrasov type matrices: A new subclass of nonsingular H-matrices and applications
    Nedovic, Maja
    Sanca, Ernest
    FILOMAT, 2024, 38 (14) : 5083 - 5097
  • [34] (q, t)-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces
    Awata, Hidetoshi
    Kanno, Hiroaki
    Mironov, Andrei
    Morozov, Alexei
    Suetake, Kazuma
    Zenkevich, Yegor
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (03):
  • [35] (q, t)-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces
    Hidetoshi Awata
    Hiroaki Kanno
    Andrei Mironov
    Alexei Morozov
    Kazuma Suetake
    Yegor Zenkevich
    Journal of High Energy Physics, 2018
  • [36] 4d N=2 supergravity observables from Nekrasov-like partition functions
    Hristov, Kiril
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, (02):
  • [37] Determining Locations of Conduction Bands and Valence Bands of Semiconductor Nanoparticles Based on Their Band Gaps
    Shao, Qi
    Lin, Haiping
    Shao, Mingwang
    ACS OMEGA, 2020, 5 (18): : 10297 - 10300
  • [38] On the parity of the partition function
    Dai, Li-Xia
    Chen, Yong-Gao
    JOURNAL OF NUMBER THEORY, 2007, 122 (02) : 283 - 289
  • [39] NOTE ON PARTITION FUNCTION
    NEWMAN, M
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (09): : 1022 - &
  • [40] ON PARTITION OF GENOTYPIC FUNCTION
    KLONECKI, W
    BIOMETRICS, 1962, 18 (03) : 422 - &