On the restricted partition function

被引:0
|
作者
Mircea Cimpoeaş
Florin Nicolae
机构
[1] Simion Stoilow Institute of Mathematics,
来源
The Ramanujan Journal | 2018年 / 47卷
关键词
Restricted partition function; Barnes zeta function; Quasi-polynomial; Primary 11P81; Secondary 11P82; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
For a vector a=(a1,…,ar)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf a = (a_1,\ldots ,a_r)$$\end{document} of positive integers, we prove formulas for the restricted partition function pa(n):=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{\mathbf a}(n): = $$\end{document} the number of integer solutions (x1,⋯,xr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x_1,\dots ,x_r)$$\end{document} to ∑j=1rajxj=n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{j=1}^r a_jx_j=n$$\end{document} with x1≥0,…,xr≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_1\ge 0, \ldots , x_r\ge 0$$\end{document} and its polynomial part.
引用
收藏
页码:565 / 588
页数:23
相关论文
共 50 条
  • [1] On the restricted partition function
    Cimpoeas, Mircea
    Nicolae, Florin
    [J]. RAMANUJAN JOURNAL, 2018, 47 (03): : 565 - 588
  • [2] ESTIMATE FOR RESTRICTED PARTITION FUNCTION
    SUDLER, C
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1964, 15 (57): : 1 - &
  • [3] Corrigendum to “on the restricted partition function”
    Mircea Cimpoeaş
    Florin Nicolae
    [J]. The Ramanujan Journal, 2019, 49 (3) : 699 - 700
  • [4] REMARKS ON THE RESTRICTED PARTITION FUNCTION
    Cimpoeas, Mircea
    [J]. MATHEMATICAL REPORTS, 2021, 23 (04): : 425 - 436
  • [5] CLOSER ESTIMATE FOR RESTRICTED PARTITION FUNCTION
    WRIGHT, EM
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1964, 15 (59): : 283 - &
  • [6] EVALUATION OF THE PARTITION FUNCTION FOR RESTRICTED INTERNAL ROTATION
    GOLDEN, S
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1958, 62 (01): : 74 - 75
  • [7] DETERMINANTS WITH BERNOULLI POLYNOMIALS AND THE RESTRICTED PARTITION FUNCTION
    Cimpoeas, Mircea
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2019, 81 (04): : 39 - 52
  • [8] On a restricted m-ary partition function
    Lu, QL
    [J]. DISCRETE MATHEMATICS, 2004, 275 (1-3) : 347 - 353
  • [9] Determinants with bernoulli polynomials and the restricted partition function
    Cimpoeaş, Mircea
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2019, 81 (04): : 39 - 52
  • [10] Expression for restricted partition function through Bernoulli polynomials
    Boris Y. Rubinstein
    [J]. The Ramanujan Journal, 2008, 15 : 177 - 185