Stabilizing multiple topological fermions on a quantum computer

被引:23
|
作者
Koh, Jin Ming [1 ]
Tai, Tommy [2 ]
Phee, Yong Han [3 ]
Ng, Wei En [3 ,4 ]
Lee, Ching Hua [3 ]
机构
[1] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[2] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[3] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[4] Natl Univ Singapore, Sch Comp, Singapore 117417, Singapore
关键词
PHYSICS; COMPUTATION;
D O I
10.1038/s41534-022-00527-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In classical and single-particle settings, non-trivial band topology always gives rise to robust boundary modes. For quantum many-body systems, however, multiple topological fermions are not always able to coexist, since Pauli exclusion prevents additional fermions from occupying the limited number of available topological modes. In this work, we show, through IBM quantum computers, how one can robustly stabilize more fermions than the number of topological modes through specially designed 2-fermion interactions. Our demonstration hinges on the realization of BDI- and D-class topological Hamiltonians on transmon-based quantum hardware, and relied on a tensor network-aided circuit recompilation approach. We also achieved the full reconstruction of multiple-fermion topological band structures through iterative quantum phase estimation (IQPE). All in all, our work showcases how advances in quantum algorithm implementation enable noisy intermediate-scale quantum (NISQ) devices to be exploited for topological stabilization beyond the context of single-particle topological invariants.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Spin-momentum locking from topological quantum chemistry: Applications to multifold fermions
    Lin, Mao
    Robredo, Inigo
    Schroeter, Niels B. M.
    Felser, Claudia
    Vergniory, Maia G.
    Bradlyn, Barry
    PHYSICAL REVIEW B, 2022, 106 (24)
  • [42] Tetrads in Solids: from Elasticity Theory to Topological Quantum Hall Systems and Weyl Fermions
    J. Nissinen
    G. E. Volovik
    Journal of Experimental and Theoretical Physics, 2018, 127 : 948 - 957
  • [43] Monodromy Analysis of the Computational Power of the Ising Topological Quantum Computer
    Ahlbrecht, Andre
    Georgiev, Lachezar S.
    Werner, Reinhard F.
    LIE THEORY AND ITS APPLICATIONS IN PHYSICS, 2010, 1243 : 279 - 288
  • [44] Photonic implementation for the topological cluster-state quantum computer
    Herrera-Marti, David A.
    Fowler, Austin G.
    Jennings, David
    Rudolph, Terry
    PHYSICAL REVIEW A, 2010, 82 (03):
  • [45] Realization of higher-order topological lattices on a quantum computer
    Koh, Jin Ming
    Tai, Tommy
    Lee, Ching Hua
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [46] Preparing topological projected entangled pair states on a quantum computer
    Schwarz, Martin
    Temme, Kristan
    Verstraete, Frank
    Perez-Garcia, David
    Cubitt, Toby S.
    PHYSICAL REVIEW A, 2013, 88 (03):
  • [47] Dynamics of symmetry-protected topological matter on a quantum computer
    Mercado, Miguel
    Chen, Kyle
    Darekar, Parth Hemant
    Nakano, Aiichiro
    Di Felice, Rosa
    Haas, Stephan
    PHYSICAL REVIEW B, 2024, 110 (07)
  • [48] Topological heavy fermions in magnetic field
    Singh, Keshav
    Chew, Aaron
    Herzog-Arbeitman, Jonah
    Bernevig, B. Andrei
    Vafek, Oskar
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [49] WILSON FERMIONS AND THE TOPOLOGICAL CHARGE ON THE LATTICE
    KARSCH, F
    SEILER, E
    STAMATESCU, IO
    NUCLEAR PHYSICS B, 1986, 271 (02) : 349 - 368
  • [50] Topological massive Dirac fermions in β-tungsten
    Li, Jiangxu
    Ullah, Sami
    Li, Ronghan
    Liu, Mingfeng
    Cao, Hongtao
    Li, Dianzhong
    Li, Yiyi
    Chen, Xing-Qiu
    PHYSICAL REVIEW B, 2019, 99 (16)