Stabilizing multiple topological fermions on a quantum computer

被引:23
|
作者
Koh, Jin Ming [1 ]
Tai, Tommy [2 ]
Phee, Yong Han [3 ]
Ng, Wei En [3 ,4 ]
Lee, Ching Hua [3 ]
机构
[1] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[2] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[3] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[4] Natl Univ Singapore, Sch Comp, Singapore 117417, Singapore
关键词
PHYSICS; COMPUTATION;
D O I
10.1038/s41534-022-00527-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In classical and single-particle settings, non-trivial band topology always gives rise to robust boundary modes. For quantum many-body systems, however, multiple topological fermions are not always able to coexist, since Pauli exclusion prevents additional fermions from occupying the limited number of available topological modes. In this work, we show, through IBM quantum computers, how one can robustly stabilize more fermions than the number of topological modes through specially designed 2-fermion interactions. Our demonstration hinges on the realization of BDI- and D-class topological Hamiltonians on transmon-based quantum hardware, and relied on a tensor network-aided circuit recompilation approach. We also achieved the full reconstruction of multiple-fermion topological band structures through iterative quantum phase estimation (IQPE). All in all, our work showcases how advances in quantum algorithm implementation enable noisy intermediate-scale quantum (NISQ) devices to be exploited for topological stabilization beyond the context of single-particle topological invariants.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Topological quantum computation away from the ground state using Majorana fermions
    Akhmerov, A. R.
    PHYSICAL REVIEW B, 2010, 82 (02):
  • [32] Quantum thermal Hall effect of Majorana fermions on the surface of superconducting topological insulators
    Shimizu, Yosuke
    Yamakage, Ai
    Nomura, Kentaro
    PHYSICAL REVIEW B, 2015, 91 (19)
  • [33] Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator
    T. Sato
    Kouji Segawa
    K. Kosaka
    S. Souma
    K. Nakayama
    K. Eto
    T. Minami
    Yoichi Ando
    T. Takahashi
    Nature Physics, 2011, 7 : 840 - 844
  • [34] Possible Topological Quantum Computation via Khovanov Homology: D-Brane Topological Quantum Computer
    Velez, Mario
    Ospina, Juan
    QUANTUM INFORMATION AND COMPUTATION VII, 2009, 7342
  • [35] Composite anyon coding and the initialization of a topological quantum computer
    Koenig, Robert
    PHYSICAL REVIEW A, 2010, 81 (05):
  • [36] Architectural design for a topological cluster state quantum computer
    Devitt, Simon J.
    Fowler, Austin G.
    Stephens, Ashley M.
    Greentree, Andrew D.
    Hollenberg, Lloyd C. L.
    Munro, William J.
    Nemoto, Kae
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [37] Topological model of the composite fermions
    Wieczorek, K
    Jacak, L
    EUROPHYSICS LETTERS, 2002, 59 (01): : 94 - 99
  • [38] Topological aspects of fermions on hyperdiamond
    Saidi, E. H.
    Fassi-Fehri, O.
    Bousmina, M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (07)
  • [39] Topological Spintronics and Majorana Fermions
    Wang, Kang
    Che, Xiaoyu
    Wu, Hao
    Shao, Qiming
    MICRO- AND NANOTECHNOLOGY SENSORS, SYSTEMS, AND APPLICATIONS XI, 2019, 10982
  • [40] Tetrads in Solids: from Elasticity Theory to Topological Quantum Hall Systems and Weyl Fermions
    Nissinen, J.
    Volovik, G. E.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2018, 127 (05) : 948 - 957