Stabilizing multiple topological fermions on a quantum computer

被引:23
|
作者
Koh, Jin Ming [1 ]
Tai, Tommy [2 ]
Phee, Yong Han [3 ]
Ng, Wei En [3 ,4 ]
Lee, Ching Hua [3 ]
机构
[1] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[2] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[3] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[4] Natl Univ Singapore, Sch Comp, Singapore 117417, Singapore
关键词
PHYSICS; COMPUTATION;
D O I
10.1038/s41534-022-00527-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In classical and single-particle settings, non-trivial band topology always gives rise to robust boundary modes. For quantum many-body systems, however, multiple topological fermions are not always able to coexist, since Pauli exclusion prevents additional fermions from occupying the limited number of available topological modes. In this work, we show, through IBM quantum computers, how one can robustly stabilize more fermions than the number of topological modes through specially designed 2-fermion interactions. Our demonstration hinges on the realization of BDI- and D-class topological Hamiltonians on transmon-based quantum hardware, and relied on a tensor network-aided circuit recompilation approach. We also achieved the full reconstruction of multiple-fermion topological band structures through iterative quantum phase estimation (IQPE). All in all, our work showcases how advances in quantum algorithm implementation enable noisy intermediate-scale quantum (NISQ) devices to be exploited for topological stabilization beyond the context of single-particle topological invariants.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Model for Topological Fermions
    M. Faber
    Few-Body Systems, 2001, 30 : 149 - 186
  • [22] Realizing topological quantum walks on NISQ digital quantum computer
    Giri, Mrinal Kanti
    Mandal, Sudhindu Bikash
    PHYSICA SCRIPTA, 2025, 100 (03)
  • [23] Scalable quantum information processing and the optical topological quantum computer
    S. Devitt
    Optics and Spectroscopy, 2010, 108 : 267 - 281
  • [24] Scalable quantum information processing and the optical topological quantum computer
    Devitt, S.
    OPTICS AND SPECTROSCOPY, 2010, 108 (02) : 267 - 281
  • [25] Network architecture for a topological quantum computer in silicon
    Buonacorsi, Brandon
    Cai, Zhenyu
    Ramirez, Eduardo B.
    Willick, Kyle S.
    Walker, Sean M.
    Li, Jiahao
    Shaw, Benjamin D.
    Xu, Xiaosi
    Benjamin, Simon C.
    Baugh, Jonathan
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (02):
  • [26] Crossing a topological phase transition with a quantum computer
    Smith, Adam
    Jobst, Bernhard
    Green, Andrew G.
    Pollmann, Frank
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [27] Unexpected mass acquisition of Dirac fermions at the quantum phase transition of a topological insulator
    Sato, T.
    Segawa, Kouji
    Kosaka, K.
    Souma, S.
    Nakayama, K.
    Eto, K.
    Minami, T.
    Ando, Yoichi
    Takahashi, T.
    NATURE PHYSICS, 2011, 7 (11) : 840 - 844
  • [28] Weyl, Dirac and high-fold chiral fermions in topological quantum matter
    Hasan, M. Zahid
    Chang, Guoqing
    Belopolski, Ilya
    Bian, Guang
    Xu, Su-Yang
    Yin, Jia-Xin
    NATURE REVIEWS MATERIALS, 2021, 6 (09) : 784 - 803
  • [29] Weyl, Dirac and high-fold chiral fermions in topological quantum matter
    M. Zahid Hasan
    Guoqing Chang
    Ilya Belopolski
    Guang Bian
    Su-Yang Xu
    Jia-Xin Yin
    Nature Reviews Materials, 2021, 6 : 784 - 803
  • [30] Quantum phases and topological properties of interacting fermions in one-dimensional superlattices
    Stenzel, L.
    Hayward, A. L. C.
    Hubig, C.
    Schollwoeck, U.
    Heidrich-Meisner, F.
    PHYSICAL REVIEW A, 2019, 99 (05)