Stabilizing multiple topological fermions on a quantum computer

被引:23
|
作者
Koh, Jin Ming [1 ]
Tai, Tommy [2 ]
Phee, Yong Han [3 ]
Ng, Wei En [3 ,4 ]
Lee, Ching Hua [3 ]
机构
[1] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[2] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[3] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[4] Natl Univ Singapore, Sch Comp, Singapore 117417, Singapore
关键词
PHYSICS; COMPUTATION;
D O I
10.1038/s41534-022-00527-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In classical and single-particle settings, non-trivial band topology always gives rise to robust boundary modes. For quantum many-body systems, however, multiple topological fermions are not always able to coexist, since Pauli exclusion prevents additional fermions from occupying the limited number of available topological modes. In this work, we show, through IBM quantum computers, how one can robustly stabilize more fermions than the number of topological modes through specially designed 2-fermion interactions. Our demonstration hinges on the realization of BDI- and D-class topological Hamiltonians on transmon-based quantum hardware, and relied on a tensor network-aided circuit recompilation approach. We also achieved the full reconstruction of multiple-fermion topological band structures through iterative quantum phase estimation (IQPE). All in all, our work showcases how advances in quantum algorithm implementation enable noisy intermediate-scale quantum (NISQ) devices to be exploited for topological stabilization beyond the context of single-particle topological invariants.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Stabilizing multiple topological fermions on a quantum computer
    Jin Ming Koh
    Tommy Tai
    Yong Han Phee
    Wei En Ng
    Ching Hua Lee
    npj Quantum Information, 8
  • [2] Stabilizing topological superfluidity of lattice fermions
    Zhang, Junhua
    Tewari, Sumanta
    Scarola, V. W.
    PHYSICAL REVIEW A, 2021, 104 (03)
  • [3] Simulating fermions on a quantum computer
    Ortiz, G
    Gubernatis, JE
    Knill, E
    Laflamme, R
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 146 (03) : 302 - 316
  • [4] Observation of multiple types of topological fermions in PdBiSe
    Lv, B. Q.
    Feng, Z-L
    Zhao, J-Z
    Yuan, Noah F. Q.
    Zong, A.
    Luo, K. E.
    Yu, R.
    Huang, Y-B
    Strocov, V. N.
    Chikina, A.
    Soluyanov, A. A.
    Gedik, N.
    Shi, Y-G
    Qian, T.
    Ding, H.
    PHYSICAL REVIEW B, 2019, 99 (24)
  • [5] Topological quantum computation based on chiral Majorana fermions
    Lian, Biao
    Sun, Xiao-Qi
    Vaezi, Abolhassan
    Qi, Xiao-Liang
    Zhang, Shou-Cheng
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (43) : 10938 - 10942
  • [6] Towards topological quantum computer
    Melnikov, D.
    Mironov, A.
    Mironov, S.
    Morozov, A.
    Morozov, An.
    NUCLEAR PHYSICS B, 2018, 926 : 491 - 508
  • [7] Multiple Types of Topological Fermions in Transition Metal Silicides
    Tang, Peizhe
    Zhou, Quan
    Zhang, Shou-Cheng
    PHYSICAL REVIEW LETTERS, 2017, 119 (20)
  • [8] Majorana fermions and multiple topological phase transition in Kitaev ladder topological superconductors
    Wakatsuki, Ryohei
    Ezawa, Motohiko
    Nagaosa, Naoto
    PHYSICAL REVIEW B, 2014, 89 (17)
  • [9] Topological quantum pump of strongly interacting fermions in coupled chains
    van Voorden, B. A.
    Schoutens, K.
    NEW JOURNAL OF PHYSICS, 2019, 21 (01)
  • [10] Braiding, Majorana fermions, Fibonacci particles and topological quantum computing
    Kauffman, Louis H.
    Lomonaco, Samuel J.
    QUANTUM INFORMATION PROCESSING, 2018, 17 (08)