ABSOLUTE EIGENVALUES-BASED COVARIANCE MATRIX ESTIMATION FOR A SPARSE ARRAY

被引:4
|
作者
Adhikari, Kaushallya [1 ]
机构
[1] Univ Rhode Isl, Kingston, RI 02881 USA
关键词
Covariance matrix; DOA estimation; positive semi-definite; sparse array; Toeplitz;
D O I
10.1109/SSP49050.2021.9513813
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The ensemble covariance matrix of a wide sense stationary signal spatially sampled by a full linear array is positive semi-definite and Toeplitz. However, the direct augmented covariance matrix of an augmentable sparse array is Toeplitz but not positive semi-definite, resulting in negative eigenvalues that pose inherent challenges in signal direction estimation problems. The positive eigenvalues-based covariance matrix for augmentable sparse arrays is robust but the matrix is unobtainable when all noise eigenvalues of the direct augmented matrix are negative, which is a possible case. To address this problem, we propose a robust covariance matrix for augmentable sparse arrays that leverages both positive and negative noise eigenvalues. The proposed covariance matrix estimate can be used in conjunction with subspace based algorithms such as multiple signal classification or adaptive beamformers such as minimum variance distortionless response beamformer to yield accurate signal direction estimates.
引用
收藏
页码:401 / 405
页数:5
相关论文
共 50 条
  • [1] DOA ESTIMATION BY COVARIANCE MATRIX SPARSE RECONSTRUCTION OF COPRIME ARRAY
    Zhou, Chengwei
    Shi, Zhiguo
    Gu, Yujie
    Goodman, Nathan A.
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 2369 - 2373
  • [2] Covariance matrix based fast smoothed sparse DOA estimation with partly calibrated array
    Liu, Jing
    Zhou, Weidong
    Huang, Defeng
    Juwono, Filbert H.
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018, 84 : 8 - 12
  • [3] Sparse estimation of a covariance matrix
    Bien, Jacob
    Tibshirani, Robert J.
    [J]. BIOMETRIKA, 2011, 98 (04) : 807 - 820
  • [4] Eigenvalues of the sample covariance matrix for a towed array
    Gerstoft, Peter
    Menon, Ravishankar
    Hodgkiss, William S.
    Mecklenbraeuker, Christoph F.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 132 (04): : 2388 - 2396
  • [5] An Eigenvalues-Based Covariance Matrix Bootstrap Model Integrated With Support Vector Machines for Multichannel EEG Signals Analysis
    Al-Hadeethi, Hanan
    Abdulla, Shahab
    Diykh, Mohammed
    Deo, Ravinesh C.
    Green, Jonathan H.
    [J]. FRONTIERS IN NEUROINFORMATICS, 2022, 15
  • [6] Sample Covariance Matrix Eigenvalues Based Blind SNR Estimation
    Hamid, Mohamed
    Bjorsell, Niclas
    Ben Slimane, Slimane
    [J]. 2014 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC) PROCEEDINGS, 2014, : 718 - 722
  • [7] Estimation of a sparse and spiked covariance matrix
    Lian, Heng
    Fan, Zengyan
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2015, 27 (02) : 241 - 252
  • [8] JACKKNIFE ESTIMATION OF THE EIGENVALUES OF THE COVARIANCE-MATRIX
    ROMANAZZI, M
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1993, 15 (02) : 179 - 198
  • [9] Eigenvalues-based LSB Steganalysis
    Farhat, Farshid
    Diyanat, Abolfazl
    Ghaemmaghami, Shahrokh
    Aref, Mohammad Reza
    [J]. ISECURE-ISC INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2012, 4 (02): : 97 - 106
  • [10] ARMA MODEL ORDER ESTIMATION BASED ON THE EIGENVALUES OF THE COVARIANCE-MATRIX
    LIANG, G
    WILKES, DM
    CADZOW, JA
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (10) : 3003 - 3009