Estimation of a sparse and spiked covariance matrix

被引:0
|
作者
Lian, Heng [1 ,2 ]
Fan, Zengyan [2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore
关键词
principal component analysis; factor analysis; nuclear norm; sparsity norm; cross-validation; OPTIMAL RATES; CONVERGENCE;
D O I
10.1080/10485252.2015.1022545
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We suggest a method for estimating a covariance matrix that can be represented as a sum of a sparse low-rank matrix and a diagonal matrix. Our formulation is based on penalized quadratic loss, which is a convex problem that can be solved via incremental gradient and proximal method. In contrast to other spiked covariance matrix estimation approaches that are related to principal component analysis and factor analysis, our method has a simple formulation and does not constrain entire rows and columns of the matrix to be zero. We further discuss a penalized entropy loss method that is nevertheless nonconvex and necessitates a majorization-minimization algorithm in combination with the incremental gradient and proximal method. We carry out simulations to demonstrate the finite-sample properties focusing on high-dimensional covariance matrices. Finally, the proposed method is illustrated using a gene expression data set.
引用
收藏
页码:241 / 252
页数:12
相关论文
共 50 条
  • [1] Sparse estimation of a covariance matrix
    Bien, Jacob
    Tibshirani, Robert J.
    [J]. BIOMETRIKA, 2011, 98 (04) : 807 - 820
  • [2] Optimal estimation and rank detection for sparse spiked covariance matrices
    Tony Cai
    Zongming Ma
    Yihong Wu
    [J]. Probability Theory and Related Fields, 2015, 161 : 781 - 815
  • [3] Optimal estimation and rank detection for sparse spiked covariance matrices
    Cai, Tony
    Ma, Zongming
    Wu, Yihong
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2015, 161 (3-4) : 781 - 815
  • [4] Bayesian Sparse Spiked Covariance Model with a Continuous Matrix Shrinkage Prior*
    Xie, Fangzheng
    Cape, Joshua
    Priebe, Carey E.
    Xu, Yanxun
    [J]. BAYESIAN ANALYSIS, 2022, 17 (04): : 1193 - 1217
  • [5] RIEMANNIAN FRAMEWORK FOR ROBUST COVARIANCE MATRIX ESTIMATION IN SPIKED MODELS
    Bouchard, Florent
    Breloy, Arnaud
    Ginolhac, Guillaume
    Pascal, Frederic
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5979 - 5983
  • [6] Sparse Covariance Matrix Estimation With Eigenvalue Constraints
    Liu, Han
    Wang, Lie
    Zhao, Tuo
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (02) : 439 - 459
  • [7] Adaptive Thresholding for Sparse Covariance Matrix Estimation
    Cai, Tony
    Liu, Weidong
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) : 672 - 684
  • [8] Sparse covariance matrix estimation for ultrahigh dimensional data
    Liang, Wanfeng
    Wu, Yue
    Chen, Hui
    [J]. STAT, 2022, 11 (01):
  • [9] OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION
    Cai, T. Tony
    Zhou, Harrison H.
    [J]. ANNALS OF STATISTICS, 2012, 40 (05): : 2389 - 2420
  • [10] A DC Programming Approach for Sparse Estimation of a Covariance Matrix
    Duy Nhat Phan
    Hoai An Le Thi
    Tao Pham Dinh
    [J]. MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015, PT 1, 2015, 359 : 131 - 142