Sample Covariance Matrix Eigenvalues Based Blind SNR Estimation

被引:0
|
作者
Hamid, Mohamed [1 ,2 ]
Bjorsell, Niclas [1 ]
Ben Slimane, Slimane [2 ]
机构
[1] Univ Gavle, S-80176 Gavle, Sweden
[2] Royal Inst Technol KTH, Wirelesskth Communicat Syst Lab CoS, S-16440 Stockholm, Sweden
关键词
SNR estimation; Sample covariance matrix; Eigenvalues detection; Minimum Descriptive Length criterion (MDL); SPECTRUM SENSING ALGORITHMS; COGNITIVE RADIO; NOISE; SIGNAL; CHANNELS;
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this paper, a newly developed SNR estimation algorithm is presented. The new algorithm is based on the eigenvalues of the sample covariance matrix of the recieved signal. The presented algorithm is blind in the sense that both the noise and the signal power are unknown and estimated from the received samples. The Minimum Descriptive Length (MDL) criterion is used to split the signal and noise corresponding eigenvalues. The experimental results are judged using the Normalized Mean Square Error (NMSE) between the estimated and the actual SNRs. The results show that, depending on the value of the received vectors size and the number of received vectors, the NMSE is changed and down to -55 dB NMSE can be achieved for the highest used values of the system dimensionality.
引用
收藏
页码:718 / 722
页数:5
相关论文
共 50 条
  • [1] Blind Spectrum Sensing Scheme Based on Harmonic Mean of Eigenvalues of Sample Covariance Matrix
    Liu, Tingting
    Lei, Kejun
    Tan, Zhewen
    Tian, Xinxin
    Tan, Yuhao
    Yang, Xi
    [J]. 2022 IEEE 21ST INTERNATIONAL CONFERENCE ON UBIQUITOUS COMPUTING AND COMMUNICATIONS, IUCC/CIT/DSCI/SMARTCNS, 2022, : 31 - 36
  • [2] On the Bias in Eigenvalues of Sample Covariance Matrix
    Hayashi, Kentaro
    Yuan, Ke-Hai
    Liang, Lu
    [J]. QUANTITATIVE PSYCHOLOGY, 2018, 233 : 221 - 233
  • [3] Covariance Matrix Estimation Depending on Bias Correction of the Sample Eigenvalues for STAP
    Zhang, Dandan
    Tang, Jun
    Zheng, Guimei
    [J]. 2017 IEEE RADAR CONFERENCE (RADARCONF), 2017, : 304 - 307
  • [4] Eigenvalues of the sample covariance matrix for a towed array
    Gerstoft, Peter
    Menon, Ravishankar
    Hodgkiss, William S.
    Mecklenbraeuker, Christoph F.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 132 (04): : 2388 - 2396
  • [5] JACKKNIFE ESTIMATION OF THE EIGENVALUES OF THE COVARIANCE-MATRIX
    ROMANAZZI, M
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1993, 15 (02) : 179 - 198
  • [6] ARMA MODEL ORDER ESTIMATION BASED ON THE EIGENVALUES OF THE COVARIANCE-MATRIX
    LIANG, G
    WILKES, DM
    CADZOW, JA
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (10) : 3003 - 3009
  • [7] ABSOLUTE EIGENVALUES-BASED COVARIANCE MATRIX ESTIMATION FOR A SPARSE ARRAY
    Adhikari, Kaushallya
    [J]. 2021 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2021, : 401 - 405
  • [8] Simulation and Analysis of SNR Estimation Algorithm Based on Observation Vector Covariance Matrix
    Wang, Fang
    He, Xu
    [J]. MEMS, NANO AND SMART SYSTEMS, PTS 1-6, 2012, 403-408 : 2168 - 2171
  • [9] Sample covariance matrix based parameter estimation for digital synchronization
    Villares, J
    Vázquez, G
    [J]. GLOBECOM'02: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-3, CONFERENCE RECORDS: THE WORLD CONVERGES, 2002, : 463 - 467
  • [10] A better approximation of moments of the eigenvalues and eigenvectors of the sample covariance matrix
    Enguix-Gonzalez, A.
    Moreno-Rebollo, J. L.
    Munoz-Pichardo, J. M.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 142 : 133 - 143