Covariance Matrix Estimation Depending on Bias Correction of the Sample Eigenvalues for STAP

被引:0
|
作者
Zhang, Dandan [1 ]
Tang, Jun [1 ]
Zheng, Guimei [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
space-time adaptive processing; covariance matrix estimation; limited sample situation;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Covariance matrix estimation is an important step for space-time adaptive processing (STAP) in radar. The sample covariance matrix can be used as an estimate of the covariance matrix. However, for this method, it is hard to obtain a good performance in the limited sample situation. To solve this problem, the diagonal loading algorithms are usually utilized. Nonetheless, instead of treating different sample eigenvalue separately, the diagonal loading algorithms correct all the sample eigenvalues with the same parameter. To further improve the performance of the diagonal loading algorithm, this paper proposes a covariance matrix estimation method depending on bias correction of the sample eigenvalues for STAP, which corrects the sample eigenvalue bias depending on the sample eigenvalue. Simulation results shows that the proposed algorithm outperforms the diagonal loading algorithm in the limited sample condition.
引用
下载
收藏
页码:304 / 307
页数:4
相关论文
共 50 条
  • [1] On the Bias in Eigenvalues of Sample Covariance Matrix
    Hayashi, Kentaro
    Yuan, Ke-Hai
    Liang, Lu
    QUANTITATIVE PSYCHOLOGY, 2018, 233 : 221 - 233
  • [2] Sample Covariance Matrix Eigenvalues Based Blind SNR Estimation
    Hamid, Mohamed
    Bjorsell, Niclas
    Ben Slimane, Slimane
    2014 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC) PROCEEDINGS, 2014, : 718 - 722
  • [3] Eigenvalues of the sample covariance matrix for a towed array
    Gerstoft, Peter
    Menon, Ravishankar
    Hodgkiss, William S.
    Mecklenbraeuker, Christoph F.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2012, 132 (04): : 2388 - 2396
  • [4] Covariance matrix estimation for the STAP based on the Bayes criterion
    Key Lab. of Radar Signal Processing, Xidian Univ., Xi'an 710071, China
    Xi'an Dianzi Keji Daxue Xuebao, 2008, 2 (223-227):
  • [5] Derivation of the Bias of the Normalized Sample Covariance Matrix in a Heterogeneous Noise With Application to Low Rank STAP Filter
    Ginolhac, Guillaume
    Forster, Philippe
    Pascal, Frederic
    Ovarlez, Jean-Philippe
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (01) : 514 - 518
  • [6] JACKKNIFE ESTIMATION OF THE EIGENVALUES OF THE COVARIANCE-MATRIX
    ROMANAZZI, M
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1993, 15 (02) : 179 - 198
  • [7] Robust Covariance Matrix Estimation for STAP via Unscented Transformation
    Jie, Yang
    2010 6TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS NETWORKING AND MOBILE COMPUTING (WICOM), 2010,
  • [8] Robust Parametric Covariance Matrix Estimation Based STAP Method
    Wei Y.-S.
    Zhou X.-B.
    Liu J.-J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2019, 47 (09): : 1943 - 1950
  • [9] A Novel Covariance Matrix Estimation via Cyclic Characteristic for STAP
    Hu, Jinfeng
    Li, Jianping
    Li, Huiyong
    Li, Keze
    Liang, Jing
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (11) : 1871 - 1875
  • [10] A better approximation of moments of the eigenvalues and eigenvectors of the sample covariance matrix
    Enguix-Gonzalez, A.
    Moreno-Rebollo, J. L.
    Munoz-Pichardo, J. M.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 142 : 133 - 143