ABSOLUTE EIGENVALUES-BASED COVARIANCE MATRIX ESTIMATION FOR A SPARSE ARRAY

被引:4
|
作者
Adhikari, Kaushallya [1 ]
机构
[1] Univ Rhode Isl, Kingston, RI 02881 USA
关键词
Covariance matrix; DOA estimation; positive semi-definite; sparse array; Toeplitz;
D O I
10.1109/SSP49050.2021.9513813
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The ensemble covariance matrix of a wide sense stationary signal spatially sampled by a full linear array is positive semi-definite and Toeplitz. However, the direct augmented covariance matrix of an augmentable sparse array is Toeplitz but not positive semi-definite, resulting in negative eigenvalues that pose inherent challenges in signal direction estimation problems. The positive eigenvalues-based covariance matrix for augmentable sparse arrays is robust but the matrix is unobtainable when all noise eigenvalues of the direct augmented matrix are negative, which is a possible case. To address this problem, we propose a robust covariance matrix for augmentable sparse arrays that leverages both positive and negative noise eigenvalues. The proposed covariance matrix estimate can be used in conjunction with subspace based algorithms such as multiple signal classification or adaptive beamformers such as minimum variance distortionless response beamformer to yield accurate signal direction estimates.
引用
收藏
页码:401 / 405
页数:5
相关论文
共 50 条
  • [21] Fast Implementation of Sparse Iterative Covariance-based Estimation for Array Processing
    Zhang, Qilin
    Abeida, Habti
    Xue, Ming
    Rowe, William
    Li, Jian
    [J]. 2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR), 2011, : 2031 - 2035
  • [22] Off-Grid Direction-of-Arrival Estimation Using a Sparse Array Covariance Matrix
    Luo, Xiaoyu
    Fei, Xiaochao
    Gan, Lu
    Wei, Ping
    [J]. PROGRESS IN ELECTROMAGNETICS RESEARCH LETTERS, 2015, 54 : 15 - 20
  • [23] Off-grid direction-of-arrival estimation using a sparse array covariance matrix
    Luo, Xiaoyu
    Fei, Xiaochao
    Gan, Lu
    Wei, Ping
    [J]. Progress in Electromagnetics Research Letters, 2015, 54 : 15 - 20
  • [24] Array covariance matrix-based sparse Bayesian learning for off-grid direction-of-arrival estimation
    Zhao, Yonghong
    Zhang, Linrang
    Gu, Yabin
    [J]. ELECTRONICS LETTERS, 2016, 52 (05) : 401 - 402
  • [25] Sparse covariance matrix estimation for ultrahigh dimensional data
    Liang, Wanfeng
    Wu, Yue
    Chen, Hui
    [J]. STAT, 2022, 11 (01):
  • [26] OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION
    Cai, T. Tony
    Zhou, Harrison H.
    [J]. ANNALS OF STATISTICS, 2012, 40 (05): : 2389 - 2420
  • [27] A DC Programming Approach for Sparse Estimation of a Covariance Matrix
    Duy Nhat Phan
    Hoai An Le Thi
    Tao Pham Dinh
    [J]. MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015, PT 1, 2015, 359 : 131 - 142
  • [28] Sparse and Low-Rank Covariance Matrix Estimation
    Zhou S.-L.
    Xiu N.-H.
    Luo Z.-Y.
    Kong L.-C.
    [J]. Journal of the Operations Research Society of China, 2015, 3 (02) : 231 - 250
  • [29] An efficient algorithm for sparse inverse covariance matrix estimation based on dual formulation
    Li, Peili
    Xiao, Yunhai
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 128 : 292 - 307
  • [30] Fast Covariance Matrix Sparse Representation for DOA Estimation Based on Dynamic Dictionary
    Qian, Tong
    Xiang, Jin Zhi
    Cui, Wei
    [J]. PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 138 - 143