Kernel Subspace Integral Image Based Probabilistic Visual Object Tracking

被引:0
|
作者
Majeed, Iftikhar [1 ]
Arif, Omar [1 ]
机构
[1] Natl Univ Sci & Technol, Sch Elect Engn & Comp Sci, Islamabad, Pakistan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel object tracking algorithm. Object appearance and spatial information is learned from a single template using a non-linear subspace projection. A probabilistic search strategy, based on particle filter, is employed to find object region in each frame of the video sequence that best models the target object in the subspace representation. Particle filter estimates the posterior distribution using weighted samples. Increasing the number of samples increases the estimation accuracy at the cost of increased computations. We, therefore propose a novel kernel subspace integral image framework, which allows the tracker to densely sample the state space without loosing computational efficiency. The algorithm is tested on real world tracking examples to demonstrate the performance.
引用
收藏
页码:449 / 455
页数:7
相关论文
共 50 条
  • [41] Visual system-based object tracking using image segmentation for biomedical applications
    Koniar, Dusan
    Hargas, Libor
    Loncova, Zuzana
    Simonova, Anna
    Duchon, Frantisek
    Beno, Peter
    ELECTRICAL ENGINEERING, 2017, 99 (04) : 1349 - 1366
  • [42] Complex object tracking by visual servoing based on 2D image motion
    Cretual, A
    Chaumette, F
    Bouthemy, P
    FOURTEENTH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOLS 1 AND 2, 1998, : 1251 - 1254
  • [43] Discriminative object tracking with subspace representation
    Rajkumari Bidyalakshmi Devi
    Yambem Jina Chanu
    Khumanthem Manglem Singh
    The Visual Computer, 2021, 37 : 1207 - 1219
  • [44] Visual system-based object tracking using image segmentation for biomedical applications
    Dušan Koniar
    Libor Hargaš
    Zuzana Loncová
    Anna Simonová
    František Duchoň
    Peter Beňo
    Electrical Engineering, 2017, 99 : 1349 - 1366
  • [45] A probabilistic object tracking model based on condensation algorithm
    Muammer Catak
    Soft Computing, 2014, 18 : 2425 - 2430
  • [46] A probabilistic object tracking model based on condensation algorithm
    Catak, Muammer
    SOFT COMPUTING, 2014, 18 (12) : 2425 - 2430
  • [47] Kernel-Based Subspace Learning on Riemannian Manifolds for Visual Recognition
    Liu, Xi
    Ma, Zhengming
    NEURAL PROCESSING LETTERS, 2020, 51 (01) : 147 - 165
  • [48] Kernel-Based Subspace Learning on Riemannian Manifolds for Visual Recognition
    Xi Liu
    Zhengming Ma
    Neural Processing Letters, 2020, 51 : 147 - 165
  • [49] Using Segmentation With Multi-Scale Selective Kernel for Visual Object Tracking
    Bao, Feng
    Cao, Yifei
    Zhang, Shunli
    Lin, Beibei
    Zhao, Sicong
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 553 - 557
  • [50] Visual Object Tracking Based on Filtering Methods
    Wang, Kun
    Liu, Xiaoping P.
    2011 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2011, : 290 - 295