Kernel Subspace Integral Image Based Probabilistic Visual Object Tracking

被引:0
|
作者
Majeed, Iftikhar [1 ]
Arif, Omar [1 ]
机构
[1] Natl Univ Sci & Technol, Sch Elect Engn & Comp Sci, Islamabad, Pakistan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel object tracking algorithm. Object appearance and spatial information is learned from a single template using a non-linear subspace projection. A probabilistic search strategy, based on particle filter, is employed to find object region in each frame of the video sequence that best models the target object in the subspace representation. Particle filter estimates the posterior distribution using weighted samples. Increasing the number of samples increases the estimation accuracy at the cost of increased computations. We, therefore propose a novel kernel subspace integral image framework, which allows the tracker to densely sample the state space without loosing computational efficiency. The algorithm is tested on real world tracking examples to demonstrate the performance.
引用
收藏
页码:449 / 455
页数:7
相关论文
共 50 条
  • [31] Visual tracking based on the sparse representation of the PCA subspace
    陈典兵
    朱明
    王慧利
    OptoelectronicsLetters, 2017, 13 (05) : 392 - 396
  • [32] VISUAL TRACKING BASED ON WEIGHTED SUBSPACE RECONSTRUCTION ERROR
    Zhou, Tao
    Zhang, Junhao
    Xie, Kai
    Yang, Jie
    He, Xiangjian
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 461 - 465
  • [33] Visual Object Tracking by Moving Horizon Estimation with Probabilistic Data Association
    Kikuchi, Tomoya
    Nonaka, Kenichiro
    Sekiguchi, Kazuma
    2020 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2020, : 115 - 120
  • [34] Multiple similarities based kernel subspace learning for image classification
    Yan, W
    Liu, QS
    Lu, HQ
    Ma, SD
    COMPUTER VISION - ACCV 2006, PT II, 2006, 3852 : 244 - 253
  • [35] An Improved Adaptive Kernel-based Object Tracking
    Liu Zhenghua
    Han Li
    MANUFACTURING SCIENCE AND TECHNOLOGY, PTS 1-8, 2012, 383-390 : 7588 - 7594
  • [36] Kernel-based Bayesian filtering for object tracking
    Han, BY
    Zhu, Y
    Comaniciu, D
    Davis, L
    2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, : 227 - 234
  • [37] Scale Invariant Kernel-Based Object Tracking
    Li, Peng
    Cai, Zhipeng
    Wang, Hanyun
    Sun, Zhuo
    Yi, Yunhui
    Wang, Cheng
    Li, Jonathan
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING, 2012, : 252 - 255
  • [38] IMPROVED KERNEL BASED TRACKING FOR FAST MOVING OBJECT
    Dang Xiaoyan
    Yao Anbang
    Wang Wei
    Zhang Ya
    Wang Zhuo
    Wang Zhihua
    VISAPP 2010: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2010, : 261 - 266
  • [39] Discriminative object tracking with subspace representation
    Devi, Rajkumari Bidyalakshmi
    Chanu, Yambem Jina
    Singh, Khumanthem Manglem
    VISUAL COMPUTER, 2021, 37 (05): : 1207 - 1219
  • [40] Neuroadaptive integral robust control of visual quadrotor for tracking a moving object
    Shao, Xingling
    Liu, Ning
    Wang, Zhuqing
    Zhang, Wendong
    Yang, Wei
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 136 (136)