Kernel Subspace Integral Image Based Probabilistic Visual Object Tracking

被引:0
|
作者
Majeed, Iftikhar [1 ]
Arif, Omar [1 ]
机构
[1] Natl Univ Sci & Technol, Sch Elect Engn & Comp Sci, Islamabad, Pakistan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel object tracking algorithm. Object appearance and spatial information is learned from a single template using a non-linear subspace projection. A probabilistic search strategy, based on particle filter, is employed to find object region in each frame of the video sequence that best models the target object in the subspace representation. Particle filter estimates the posterior distribution using weighted samples. Increasing the number of samples increases the estimation accuracy at the cost of increased computations. We, therefore propose a novel kernel subspace integral image framework, which allows the tracker to densely sample the state space without loosing computational efficiency. The algorithm is tested on real world tracking examples to demonstrate the performance.
引用
收藏
页码:449 / 455
页数:7
相关论文
共 50 条
  • [21] RETRACTED: The visual object tracking algorithm research based on adaptive combination kernel (Retracted Article)
    Chen, Yuantao
    Wang, Jin
    Xia, Runlong
    Zhang, Qian
    Cao, Zhouhong
    Yang, Kai
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2019, 10 (12) : 4855 - 4867
  • [22] Kernel-based tracking from a probabilistic viewpoint
    Nguyen, Quang Anh
    Robles-Kelly, Antonio
    Shen, Chunhua
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 2070 - +
  • [23] Graph Based Visual Object Tracking
    Zhou Guanling
    Wang Yuping
    Dong Nanping
    2009 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL I, 2009, : 99 - 102
  • [24] Object Tracking Based on Visual Attention
    Lin, Mingqiang
    Dai, Houde
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1846 - 1849
  • [25] Visual Saliency Based Object Tracking
    Zhang, Geng
    Yuan, Zejian
    Zheng, Nanning
    Sheng, Xingdong
    Liu, Tie
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 193 - +
  • [26] Robust Kernel-Based Object Tracking with Multiple Kernel Centers
    Zhang, Shuo
    Bar-Shalom, Yaakov
    FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 1014 - 1021
  • [27] The Object Tracking Based on Integral Covariance Matrix
    Wang, Qian
    Gu, Xin
    Sun, Zheng-hao
    Li, Zhe
    Ni, Jun
    2015 EIGHTH INTERNATIONAL CONFERENCE ON INTERNET COMPUTING FOR SCIENCE AND ENGINEERING (ICICSE), 2015, : 39 - 42
  • [28] Visual tracking by affine kernel fitting using color and object boundary
    Leichter, Ido
    Lindenbaum, Michael
    Rivlin, Ehud
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 2159 - 2164
  • [29] Generalized Kernel-Based Visual Tracking
    Shen, Chunhua
    Kim, Junae
    Wang, Hanzi
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2010, 20 (01) : 119 - 130
  • [30] Visual tracking based on the sparse representation of the PCA subspace
    Chen D.-B.
    Zhu M.
    Wang H.-L.
    Optoelectronics Letters, 2017, 13 (05) : 392 - 396