Kernel Subspace Integral Image Based Probabilistic Visual Object Tracking

被引:0
|
作者
Majeed, Iftikhar [1 ]
Arif, Omar [1 ]
机构
[1] Natl Univ Sci & Technol, Sch Elect Engn & Comp Sci, Islamabad, Pakistan
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel object tracking algorithm. Object appearance and spatial information is learned from a single template using a non-linear subspace projection. A probabilistic search strategy, based on particle filter, is employed to find object region in each frame of the video sequence that best models the target object in the subspace representation. Particle filter estimates the posterior distribution using weighted samples. Increasing the number of samples increases the estimation accuracy at the cost of increased computations. We, therefore propose a novel kernel subspace integral image framework, which allows the tracker to densely sample the state space without loosing computational efficiency. The algorithm is tested on real world tracking examples to demonstrate the performance.
引用
收藏
页码:449 / 455
页数:7
相关论文
共 50 条
  • [1] Visual object recognition using probabilistic kernel subspace similarity
    Lee, JG
    Wang, JD
    Zhang, CS
    Bian, ZQ
    PATTERN RECOGNITION, 2005, 38 (07) : 997 - 1008
  • [2] MIL based visual object tracking with kernel and scale adaptation
    Sharma, Vijay K.
    Mahapatra, K. K.
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2017, 53 : 51 - 64
  • [3] A Novel Algorithm Based on a Common Subspace Fusion for Visual Object Tracking
    Javed, Sajid
    Mahmood, Arif
    Ullah, Ihsan
    Bouwmans, Thierry
    Khonji, Majid
    Dias, Jorge Manuel Miranda
    Werghi, Naoufel
    IEEE ACCESS, 2022, 10 : 24690 - 24703
  • [4] Adaptive probabilistic visual tracking with incremental subspace update
    Ross, D
    Lim, J
    Yang, MH
    COMPUTER VISION - ECCV 2004, PT 2, 2004, 3022 : 470 - 482
  • [5] Orientation and Scale Invariant Kernel-Based Object Tracking with Probabilistic Emphasizing
    Yi, Kwang Moo
    Kim, Soo Wan
    Choi, Jin Young
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 130 - 139
  • [6] Visual Object Tracking with Pyramid, Random Subspace Features
    Huang, Junheng
    Du, Yu
    Quan, Guangri
    Zhu, Dongjie
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 2090 - 2093
  • [7] Visual tracking based on object modeling using probabilistic graphical model
    Gao, Lin
    Tang, Peng
    Sheng, Peng
    Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2010, 21 (01): : 124 - 129
  • [8] Visual tracking via efficient kernel discriminant subspace learning
    Shen, CH
    van den Hengel, A
    Brooks, MJ
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 1605 - 1608
  • [9] Kernel Based Visual Tracking with Reasoning about Adaptive Distribution Image
    Han, Risheng
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT III, 2011, 7004 : 529 - 536
  • [10] Kernel-based object tracking
    Comaniciu, D
    Ramesh, V
    Meer, P
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (05) : 564 - 577