Temperature-Dependent Threshold Current in InP Quantum-Dot Lasers

被引:14
|
作者
Smowton, Peter M. [1 ]
Elliott, Stella N. [1 ]
Shutts, Samuel [1 ]
Al-Ghamdi, Mohammed S. [2 ]
Krysa, Andrey B. [3 ]
机构
[1] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales
[2] King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia
[3] Univ Sheffield, EPSRC Natl Ctr Technol 3 5, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Nonradiative recombination; quantum-dot (QD) devices; semiconductor laser; short-wavelength lasers; threshold current density; WAVELENGTH;
D O I
10.1109/JSTQE.2011.2115235
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We explore the origins of the threshold current temperature dependence in InP quantum-dot (QD) lasers. While the internal optical mode loss does not change with temperature, the peak gain required to overcome the losses becomes more difficult to achieve at elevated temperature due to the thermal spreading of carriers among the available states. In 2-mm-long lasers with uncoated facets, this effect is responsible for 66% of the difference in threshold current density between 300 and 360 K. Spontaneous recombination current only makes up at most 10% of the total recombination current density over this temperature range, but the temperature dependence of the spontaneous recombination in the QD and quantum-well capping layers can be used, assuming only a simple proportional nonradiative recombination process, to explain the temperature dependence of the threshold current density.
引用
收藏
页码:1343 / 1348
页数:6
相关论文
共 50 条
  • [21] Temperature dependence of threshold current in p-doped quantum dot lasers
    Sandall, I. C.
    Smowton, P. M.
    Thomson, J. D.
    Badcock, T.
    Mowbray, D. J.
    Liu, H. -Y.
    Hopkinson, M.
    APPLIED PHYSICS LETTERS, 2006, 89 (15)
  • [22] Comparison of dynamic properties of InP/InAs quantum-dot and quantum-dash lasers
    Sadeev, T.
    Arsenijevic, D.
    Bimberg, D.
    APPLIED PHYSICS LETTERS, 2016, 109 (16)
  • [23] Submonolayer Quantum-Dot Lasers
    Lingnau, Benjamin
    Luedge, Kathy
    Owschimikow, Nina
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXV, 2017, 10098
  • [24] Quantum-dot heterostructure lasers
    Ledentsov, NN
    Grundmann, M
    Heinrichsdorff, F
    Bimberg, D
    Ustinov, VM
    Zhukov, AE
    Maximov, MV
    Alferov, ZI
    Lott, JA
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2000, 6 (03) : 439 - 451
  • [25] Temperature Compensation for Threshold Current and Slope Efficiency of 1.3 μm InAs/GaAs Quantum-Dot Lasers by Facet Coating Design
    Xu Peng-Fei
    Yang Tao
    Ji Hai-Ming
    Cao Yu-Lian
    Gu Yong-Xian
    Wang Zhan-Guo
    CHINESE PHYSICS LETTERS, 2011, 28 (04)
  • [26] High-performance 1.3 μm InAs/GaAs quantum-dot lasers with low threshold current and negative characteristic temperature
    Jin, C. Y.
    Liu, H. Y.
    Badcock, T. J.
    Groom, K. M.
    Gutierrez, M.
    Royce, R.
    Hopkinson, M.
    Mowbray, D. J.
    IEE PROCEEDINGS-OPTOELECTRONICS, 2006, 153 (06): : 280 - 283
  • [28] Engineering quantum-dot lasers
    Marsh, JH
    Bhattacharyya, D
    Helmy, AS
    Avrutin, EA
    Bryce, AC
    PHYSICA E, 2000, 8 (02): : 154 - 163
  • [29] Spatial hole burning and multimode generation threshold in quantum-dot lasers
    Asryan, LV
    Suris, RA
    APPLIED PHYSICS LETTERS, 1999, 74 (09) : 1215 - 1217
  • [30] Small-signal modulation response of InP/GaInP quantum-dot lasers
    Riedl, T
    Hangleiter, A
    Porsche, J
    Scholz, F
    APPLIED PHYSICS LETTERS, 2002, 80 (21) : 4015 - 4017