Temperature-Dependent Threshold Current in InP Quantum-Dot Lasers

被引:14
|
作者
Smowton, Peter M. [1 ]
Elliott, Stella N. [1 ]
Shutts, Samuel [1 ]
Al-Ghamdi, Mohammed S. [2 ]
Krysa, Andrey B. [3 ]
机构
[1] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, S Glam, Wales
[2] King Abdulaziz Univ, Dept Phys, Jeddah 21589, Saudi Arabia
[3] Univ Sheffield, EPSRC Natl Ctr Technol 3 5, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Nonradiative recombination; quantum-dot (QD) devices; semiconductor laser; short-wavelength lasers; threshold current density; WAVELENGTH;
D O I
10.1109/JSTQE.2011.2115235
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We explore the origins of the threshold current temperature dependence in InP quantum-dot (QD) lasers. While the internal optical mode loss does not change with temperature, the peak gain required to overcome the losses becomes more difficult to achieve at elevated temperature due to the thermal spreading of carriers among the available states. In 2-mm-long lasers with uncoated facets, this effect is responsible for 66% of the difference in threshold current density between 300 and 360 K. Spontaneous recombination current only makes up at most 10% of the total recombination current density over this temperature range, but the temperature dependence of the spontaneous recombination in the QD and quantum-well capping layers can be used, assuming only a simple proportional nonradiative recombination process, to explain the temperature dependence of the threshold current density.
引用
收藏
页码:1343 / 1348
页数:6
相关论文
共 50 条
  • [41] InP quantum dot lasers with temperature insensitive operating wavelength
    Shutts, S.
    Smowton, P. M.
    Krysa, A. B.
    APPLIED PHYSICS LETTERS, 2013, 103 (06)
  • [42] Signatures of the discrete level spectrum in temperature-dependent transport through open quantum-dot arrays
    Shailos, A
    Prasad, C
    Elhassan, M
    Akis, R
    Ferry, DK
    Bird, JP
    Aoki, N
    Lin, LH
    Ochiai, Y
    Ishibashi, K
    Aoyagi, Y
    PHYSICAL REVIEW B, 2001, 64 (19):
  • [43] Carrier statistics in quantum-dot lasers
    Grundmann, M
    Heitz, R
    Bimberg, D
    PHYSICS OF THE SOLID STATE, 1998, 40 (05) : 772 - 774
  • [44] Quantum-Dot Lasers: Physics and Applications
    Smowton, P. M.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [45] Tunneling injection quantum-dot lasers
    Chuang, S. L.
    Kim, J.
    Kondratko, P. K.
    Walter, G.
    Holonyak, N., Jr.
    Heller, R. D.
    Zhang, X. B.
    Dupuis, R. D.
    PROGRESS IN SEMICONDUCTOR MATERIALS V-NOVEL MATERIALS AND ELECTRONIC AND OPTOELECTRONIC APPLICATIONS, 2006, 891 : 51 - +
  • [46] Quantum-dot semiconductor disk lasers
    Germann, T. D.
    Strittmatter, A.
    Pohl, U. W.
    Bimberg, D.
    Rautiainen, J.
    Guina, M.
    Okhotnikov, O. G.
    JOURNAL OF CRYSTAL GROWTH, 2008, 310 (23) : 5182 - 5186
  • [47] Semiconductor quantum-dot lasers and amplifiers
    Hvam, JM
    Borri, P
    Ledentsov, NN
    Bimberg, D
    SEMICONDUCTOR LASERS AND OPTICAL AMPLIFIERS FOR LIGHTWAVE COMMUNICATION SYSTEMS, 2002, 4871 : 130 - 140
  • [48] Frequency-Dependent Linewidth Enhancement Factor of Quantum-Dot Lasers
    Gerhard, Sven
    Schilling, Christian
    Gerschuetz, Florian
    Fischer, Marc
    Koeth, Johannes
    Krestnikov, Igor
    Kovsh, Alexey
    Kamp, Martin
    Hoefling, Sven
    Forchel, Alfred
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (17-20) : 1736 - 1738
  • [49] Optically injected quantum-dot lasers
    Erneux, T.
    Viktorov, E. A.
    Kelleher, B.
    Goulding, D.
    Hegarty, S. P.
    Huyet, G.
    OPTICS LETTERS, 2010, 35 (07) : 937 - 939
  • [50] Tunneling injection quantum-dot lasers
    Chuang, SL
    Kondratko, K
    Kim, J
    Walter, G
    Holonyak, N
    Heller, R
    Zhang, X
    Dupuis, R
    Novel In-Plane Semiconductor Lasers IV, 2005, 5738 : 347 - 354