The phase sensitivity of a fully quantum three-mode nonlinear interferometer

被引:7
|
作者
Florez, Jefferson [1 ,2 ]
Giese, Enno [1 ,2 ,4 ,5 ]
Curic, Davor [1 ,2 ]
Giner, Lambert [1 ,2 ]
Boyd, Robert W. [1 ,2 ,3 ]
Lundeen, Jeff S. [1 ,2 ]
机构
[1] Univ Ottawa, Dept Phys, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[2] Univ Ottawa, Ctr Res Photon, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[3] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[4] Univ Ulm, Inst Quantenphys, Albert Einstein Allee 11, D-89069 Ulm, Germany
[5] Univ Ulm, Ctr Integrated Quantum Sci & Technol IQST, Albert Einstein Allee 11, D-89069 Ulm, Germany
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
基金
加拿大自然科学与工程研究理事会;
关键词
quantum metrology; nonlinear interferometer; Heisenberg scaling; CONVERSION;
D O I
10.1088/1367-2630/aaf3d2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a nonlinear interferometer consisting of two consecutive parametric amplifiers, where all three optical fields (pump, signal and idler) are treated quantum mechanically, allowing for pump depletion and other quantum phenomena. The interaction of all three fields in the final amplifier leads to an interference pattern from which we extract the phase uncertainty. We find that the phase uncertainty oscillates around a saturation level that decreases as the mean number N of input pump photons increases. For optimal interaction strengths, we also find a phase uncertainty below the shot-noise level and obtain a Heisenberg scaling 1/N. This is in contrast to the conventional treatment within the parametric approximation, where the Heisenberg scaling is observed as a function of the number of down-converted photons inside the interferometer.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Three-mode orthomax rotation
    Henk A. L. Kiers
    Psychometrika, 1997, 62 : 579 - 598
  • [42] Three-mode orthomax rotation
    Kiers, HAL
    PSYCHOMETRIKA, 1997, 62 (04) : 579 - 598
  • [43] High-speed and high-resolution heterodyne interferometer using a three-mode laser
    Yokoyama, T
    Araki, T
    Yokoyama, S
    Suzuki, N
    18TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR THE NEXT MILLENNIUM, TECHNICAL DIGEST, 1999, 3749 : 794 - 795
  • [44] Development of a Nonlinear Model Predictive Control-Based Nonlinear Three-Mode Controller for a Nonlinear System
    Kumar, Suraj Suresh
    Indiran, Thirunavukkarasu
    Itty, George Vadakkekkara
    Shettigar, J. Prajwal
    Paul, Tinu Valsa
    ACS OMEGA, 2022, : 42418 - 42437
  • [45] Study of three-mode parametric instability
    Liang, Fengchao
    Zhao, Chunnong
    Gras, Slawomir
    Ju, Li
    Blair, D. G.
    8TH EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES, 2010, 228
  • [46] Intensity phase coherence in three-mode Fabry-Perot lasers
    Nguyen, BA
    Mandel, P
    PHYSICAL REVIEW A, 1996, 54 (02): : 1638 - 1646
  • [47] Quantum properties of the three-mode squeezed operator: Triply concurrent parametric amplifiers
    El-Orany, Faisal A. A.
    Messikh, Azeddine
    Mahmoud, Gharib S.
    Wahiddin, M. R. B.
    OPTICS COMMUNICATIONS, 2010, 283 (16) : 3158 - 3167
  • [48] Quantum steering and entanglement in three-mode triangle Bose-Hubbard system
    Kalaga, J. K.
    Leonski, W.
    Szczesniak, R.
    QUANTUM INFORMATION PROCESSING, 2017, 16 (11)
  • [49] Transfer of quantum correlations through strong coupling in a three-mode optomechanical system
    Tesfahannes, Tesfay Gebremariam
    Abie, Bazezew Gezahegn
    Mekonnen, Habtamu Dagnaw
    Mazaheri, Mojtaba
    JOURNAL OF OPTICS-INDIA, 2024,
  • [50] Pulsed entanglement and quantum steering in a three-mode electro-optomechanical system
    Mazaheri, M.
    Jamasb, S.
    QUANTUM INFORMATION PROCESSING, 2020, 19 (08)