The phase sensitivity of a fully quantum three-mode nonlinear interferometer

被引:7
|
作者
Florez, Jefferson [1 ,2 ]
Giese, Enno [1 ,2 ,4 ,5 ]
Curic, Davor [1 ,2 ]
Giner, Lambert [1 ,2 ]
Boyd, Robert W. [1 ,2 ,3 ]
Lundeen, Jeff S. [1 ,2 ]
机构
[1] Univ Ottawa, Dept Phys, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[2] Univ Ottawa, Ctr Res Photon, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[3] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[4] Univ Ulm, Inst Quantenphys, Albert Einstein Allee 11, D-89069 Ulm, Germany
[5] Univ Ulm, Ctr Integrated Quantum Sci & Technol IQST, Albert Einstein Allee 11, D-89069 Ulm, Germany
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
基金
加拿大自然科学与工程研究理事会;
关键词
quantum metrology; nonlinear interferometer; Heisenberg scaling; CONVERSION;
D O I
10.1088/1367-2630/aaf3d2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a nonlinear interferometer consisting of two consecutive parametric amplifiers, where all three optical fields (pump, signal and idler) are treated quantum mechanically, allowing for pump depletion and other quantum phenomena. The interaction of all three fields in the final amplifier leads to an interference pattern from which we extract the phase uncertainty. We find that the phase uncertainty oscillates around a saturation level that decreases as the mean number N of input pump photons increases. For optimal interaction strengths, we also find a phase uncertainty below the shot-noise level and obtain a Heisenberg scaling 1/N. This is in contrast to the conventional treatment within the parametric approximation, where the Heisenberg scaling is observed as a function of the number of down-converted photons inside the interferometer.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Nonlinear interaction effects in a three-mode cavity optomechanical system
    Qiu, Jing
    Jin, Li-Jing
    Peng, Zhen-Yang
    Chesi, Stefano
    Wang, Ying-Dan
    PHYSICAL REVIEW A, 2022, 105 (03)
  • [22] Three-mode partitioning
    Schepers, Jan
    van Mechelen, Iven
    Ceulemans, Eva
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (03) : 1623 - 1642
  • [23] Quantum properties of a new three-mode squeezed vacuum state
    Lu, Daoming
    Guangxue Xuebao/Acta Optica Sinica, 2014, 34 (08):
  • [24] A Three-Mode Erasure Code for Continuous Variable Quantum Communications
    Villasenor, Eduardo
    Malaney, Robert
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 5231 - 5236
  • [25] Reversible quantum state transfer in a three-mode optomechanical system
    Zhang, Chun-Ling
    Chen, Xiang
    Liao, Chang-Geng
    Lin, Xiu-Min
    LASER PHYSICS LETTERS, 2021, 18 (06)
  • [26] Compact silicon three-mode multiplexer by refractive-index manipulation on a multi-mode interferometer
    Wang, Zhen
    Yao, Chunhui
    Zhang, Yong
    Su, Yikai
    OPTICS EXPRESS, 2021, 29 (09): : 13899 - 13907
  • [27] Enhancement of the phase-measurement sensitivity beyond the standard quantum limit by a nonlinear interferometer
    Ou, Z. Y.
    PHYSICAL REVIEW A, 2012, 85 (02):
  • [28] Three-mode entanglement by interlinked nonlinear interactions in optical χ(2) media
    Ferraro, A
    Paris, MGA
    Bondani, M
    Allevi, A
    Puddu, E
    Andreoni, A
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2004, 21 (06) : 1241 - 1249
  • [29] On the internal nonlinear resonant three-mode interaction of charged drop oscillations
    S. O. Shiryaeva
    D. F. Belonozhko
    A. I. Grigor’ev
    Technical Physics, 2005, 50 : 185 - 192
  • [30] Vector breathers and the inelastic interaction in a three-mode nonlinear optical fiber
    Liu, Chong
    Yang, Zhan-Ying
    Zhao, Li-Chen
    Yang, Wen-Li
    PHYSICAL REVIEW A, 2014, 89 (05):