The phase sensitivity of a fully quantum three-mode nonlinear interferometer

被引:7
|
作者
Florez, Jefferson [1 ,2 ]
Giese, Enno [1 ,2 ,4 ,5 ]
Curic, Davor [1 ,2 ]
Giner, Lambert [1 ,2 ]
Boyd, Robert W. [1 ,2 ,3 ]
Lundeen, Jeff S. [1 ,2 ]
机构
[1] Univ Ottawa, Dept Phys, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[2] Univ Ottawa, Ctr Res Photon, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[3] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[4] Univ Ulm, Inst Quantenphys, Albert Einstein Allee 11, D-89069 Ulm, Germany
[5] Univ Ulm, Ctr Integrated Quantum Sci & Technol IQST, Albert Einstein Allee 11, D-89069 Ulm, Germany
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
基金
加拿大自然科学与工程研究理事会;
关键词
quantum metrology; nonlinear interferometer; Heisenberg scaling; CONVERSION;
D O I
10.1088/1367-2630/aaf3d2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a nonlinear interferometer consisting of two consecutive parametric amplifiers, where all three optical fields (pump, signal and idler) are treated quantum mechanically, allowing for pump depletion and other quantum phenomena. The interaction of all three fields in the final amplifier leads to an interference pattern from which we extract the phase uncertainty. We find that the phase uncertainty oscillates around a saturation level that decreases as the mean number N of input pump photons increases. For optimal interaction strengths, we also find a phase uncertainty below the shot-noise level and obtain a Heisenberg scaling 1/N. This is in contrast to the conventional treatment within the parametric approximation, where the Heisenberg scaling is observed as a function of the number of down-converted photons inside the interferometer.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] High-speed subnanometre interferometry using an improved three-mode heterodyne interferometer
    Yokoyama, S
    Yokoyama, T
    Araki, T
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2005, 16 (09) : 1841 - 1847
  • [32] Nonlinear dynamics of a three-beam structure with attached mass and three-mode interactions
    Fengxia Wang
    Anil K. Bajaj
    Nonlinear Dynamics, 2010, 62 : 461 - 484
  • [33] Polarimetric sensitivity of a three-mode elliptical-core fiber to strain
    Chmielewska, E
    Urbanczyk, W
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS II, 2004, 5484 : 364 - 369
  • [34] Three-mode squeezing operators
    Fan, HY
    Yu, SX
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1998, 29 (04) : 487 - 490
  • [35] On the internal nonlinear resonant three-mode interaction of charged drop oscillations
    Shiryaeva, SO
    Belonozhko, DF
    Grigor'ev, AI
    TECHNICAL PHYSICS, 2005, 50 (02) : 185 - 192
  • [36] COUPLED NONLINEAR DYNAMICS IN THE THREE-MODE INTEGRABLE SYSTEM ON A REGULAR CHAIN
    Vakhnenko, O. O.
    UKRAINIAN JOURNAL OF PHYSICS, 2021, 66 (07): : 601 - 611
  • [37] Nonlinear dynamics of a three-beam structure with attached mass and three-mode interactions
    Wang, Fengxia
    Bajaj, Anil K.
    NONLINEAR DYNAMICS, 2010, 62 (1-2) : 461 - 484
  • [38] Quantum steering and entanglement in three-mode triangle Bose–Hubbard system
    J. K. Kalaga
    W. Leoński
    R. Szczȩśniak
    Quantum Information Processing, 2017, 16
  • [39] Three-Mode Optoacoustic Parametric Amplifier: A Tool for Macroscopic Quantum Experiments
    Zhao, Chunnong
    Ju, Li
    Miao, Haixing
    Gras, Slawomir
    Fan, Yaohui
    Blair, David G.
    PHYSICAL REVIEW LETTERS, 2009, 102 (24)
  • [40] Enhanced phase sensitivity with a nonconventional interferometer and nonlinear phase shifter
    Chang, Shoukang
    Wei, Chaoping
    Zhang, Huan
    Xia, Ying
    Ye, Wei
    Hu, Liyun
    PHYSICS LETTERS A, 2020, 384 (29)