The phase sensitivity of a fully quantum three-mode nonlinear interferometer

被引:7
|
作者
Florez, Jefferson [1 ,2 ]
Giese, Enno [1 ,2 ,4 ,5 ]
Curic, Davor [1 ,2 ]
Giner, Lambert [1 ,2 ]
Boyd, Robert W. [1 ,2 ,3 ]
Lundeen, Jeff S. [1 ,2 ]
机构
[1] Univ Ottawa, Dept Phys, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[2] Univ Ottawa, Ctr Res Photon, 25 Templeton St, Ottawa, ON K1N 6N5, Canada
[3] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
[4] Univ Ulm, Inst Quantenphys, Albert Einstein Allee 11, D-89069 Ulm, Germany
[5] Univ Ulm, Ctr Integrated Quantum Sci & Technol IQST, Albert Einstein Allee 11, D-89069 Ulm, Germany
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
基金
加拿大自然科学与工程研究理事会;
关键词
quantum metrology; nonlinear interferometer; Heisenberg scaling; CONVERSION;
D O I
10.1088/1367-2630/aaf3d2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a nonlinear interferometer consisting of two consecutive parametric amplifiers, where all three optical fields (pump, signal and idler) are treated quantum mechanically, allowing for pump depletion and other quantum phenomena. The interaction of all three fields in the final amplifier leads to an interference pattern from which we extract the phase uncertainty. We find that the phase uncertainty oscillates around a saturation level that decreases as the mean number N of input pump photons increases. For optimal interaction strengths, we also find a phase uncertainty below the shot-noise level and obtain a Heisenberg scaling 1/N. This is in contrast to the conventional treatment within the parametric approximation, where the Heisenberg scaling is observed as a function of the number of down-converted photons inside the interferometer.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Phase sensitivity of a three-mode nonlinear interferometer
    Wei, Chao-Ping
    Wu, Zhao-Ming
    Deng, Cheng-Zhi
    Hu, Li-Yun
    OPTICS COMMUNICATIONS, 2019, 452 : 189 - 194
  • [2] Simultaneously estimating two phases in three-mode nonlinear interferometer
    Ying-Wang
    Hu, Li-Yun
    Zhang, Zhi-Ming
    Wei, Chao-Ping
    OPTICS COMMUNICATIONS, 2018, 427 : 250 - 256
  • [3] Three-mode system of nonlinear quantum oscillators and quantum correlations
    Kalaga, J. K.
    Leonski, W.
    Kowalewska-Kudlaszyk, A.
    19TH POLISH-SLOVAK-CZECH OPTICAL CONFERENCE ON WAVE AND QUANTUM ASPECTS OF CONTEMPORARY OPTICS, 2014, 9441
  • [4] Quantum properties of the codirectional three-mode Kerr nonlinear coupler
    F. A.A. El-Orany
    M. Sebawe Abdalla
    J. Peřina
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2005, 33 : 453 - 463
  • [5] Quantum properties of the codirectional three-mode Kerr nonlinear coupler
    El-Orany, FAA
    Abdalla, MS
    Perina, J
    EUROPEAN PHYSICAL JOURNAL D, 2005, 33 (03): : 453 - 463
  • [6] Squeezed States Generation in a Three-Mode System of Nonlinear Quantum Oscillators
    Kalaga, J. K.
    ACTA PHYSICA POLONICA A, 2023, 144 (05) : 289 - 291
  • [7] Three-mode nonlinear Bogoliubov transformations
    Ren, Gang
    Song, Tong-Qiang
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (05) : 1147 - 1155
  • [8] Three-Mode Nonlinear Bogoliubov Transformations
    Gang Ren
    Tong-Qiang Song
    International Journal of Theoretical Physics, 2008, 47 : 1147 - 1155
  • [9] Quantum phase transition in an effective three-mode model of interacting bosons
    Frazao, H. M.
    Peixoto de Faria, J. G.
    Pellegrino, G. Q.
    Nemes, M. C.
    PHYSICAL REVIEW E, 2017, 96 (06)
  • [10] Phase control of entanglement and quantum steering in a three-mode optomechanical system
    Sun, F. X.
    Mao, D.
    Dai, Y. T.
    Ficek, Z.
    He, Q. Y.
    Gong, Q. H.
    NEW JOURNAL OF PHYSICS, 2017, 19