A note on existence of antisymmetric solutions for a class of nonlinear Schrodinger equations

被引:7
|
作者
Carvalho, Janete S. [1 ]
Maia, Liliane A. [1 ]
Miyagaki, Olimpio H. [2 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Vicosa, Dept Matemat, BR-36570000 Vicosa, MG, Brazil
来源
关键词
Nonlinear Schrodinger equation; Concentration-Compactness principle; CONCENTRATION-COMPACTNESS PRINCIPLE; NODAL SOLUTIONS; ELLIPTIC EQUATION; CALCULUS; NUMBER;
D O I
10.1007/s00033-010-0070-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Schrodinger equation -Delta U vertical bar V(x)u = f(u) in R(N). We assume that V is invariant under an orthogonal involution and show the existence of a particular type of sign changing solution. The basic tool employed here is the Concentration-Compactness Principle.
引用
收藏
页码:67 / 86
页数:20
相关论文
共 50 条
  • [1] A note on existence of antisymmetric solutions for a class of nonlinear Schrödinger equations
    Janete S. Carvalho
    Liliane A. Maia
    Olimpio H. Miyagaki
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2011, 62 : 67 - 86
  • [2] Antisymmetric solutions for a class of quasilinear defocusing Schrodinger equations
    Gamboa, Janete Soares
    Zhou, Jiazheng
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2020, (16) : 1 - 18
  • [3] ANTISYMMETRIC SOLUTIONS FOR A CLASS GENERALIZED QUASILINEAR SCHRODINGER EQUATIONS
    Gamboa, Janete Soares
    Zhou, Jiazheng
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2020, 12 (01): : 29 - 45
  • [4] EXISTENCE OF SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS
    SCHMITT, K
    TSAI, L
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1977, 76 : 227 - 232
  • [5] Existence and multiplicity of solutions for a class of nonlinear Schrodinger- KdV equations
    Institute of mathematics, Wenshan College, China
    不详
    [J]. Open. Cybern. Syst. J., 1 (2445-2450):
  • [6] The existence of steady solutions for a class of Schrodinger equations in nonlinear optical lattices
    Zhang, Ruifeng
    Wang, Hong
    Liu, Rentao
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (01)
  • [7] Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity
    Alves, Claudianor O.
    Souto, Marco A. S.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) : 1977 - 1991
  • [8] ANTISYMMETRIC SOLUTIONS FOR THE NONLINEAR SCHRODINGER EQUATION
    Carvalho, Janete S.
    Maia, Liliane A.
    Miyagaki, Olimpio H.
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2011, 24 (1-2) : 109 - 134
  • [9] Existence and number of solutions for a class of semilinear Schrodinger equations
    Ding, YH
    Szulkin, A
    [J]. CONTRIBUTIONS TO NONLINEAR ANALYSIS: A TRIBUTE TO D. G. DE FIGUEIREDO ON THE OCCASION OF HIS 70TH BIRTHDAY, 2006, 66 : 221 - +
  • [10] Multiple solutions for a class of nonlinear Schrodinger equations
    Ding, YH
    Luan, SX
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 207 (02) : 423 - 457