Antisymmetric solutions for a class of quasilinear defocusing Schrodinger equations

被引:0
|
作者
Gamboa, Janete Soares [1 ]
Zhou, Jiazheng [1 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
quasilinear Schrodinger equation; antisymmetric solutions; Nehari manifold; SIGN-CHANGING SOLUTIONS; SOLITON-SOLUTIONS; ELLIPTIC-EQUATIONS; NODAL SOLUTIONS; EXISTENCE;
D O I
10.14232/ejqtde.2020.1.16
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the existence of antisymmetric solutions for the quasilinear defocusing Schrodinger equation in H-1(RN): -Delta u + k/2u Delta u(2) + V(x)u = g(u), where N >= 3, V(x) is a positive continuous potential, g(u) is of subcritical growth and k is a non-negative parameter. By considering a minimizing problem restricted on a partial Nehari manifold, we prove the existence of antisymmetric solutions via a deformation lemma.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] ANTISYMMETRIC SOLUTIONS FOR A CLASS GENERALIZED QUASILINEAR SCHRODINGER EQUATIONS
    Gamboa, Janete Soares
    Zhou, Jiazheng
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2020, 12 (01): : 29 - 45
  • [2] Multiple solutions for a class of quasilinear Schrodinger equations
    Li, Quanqing
    Wang, Wenbo
    Teng, Kaimin
    Wu, Xian
    [J]. MATHEMATISCHE NACHRICHTEN, 2019, 292 (07) : 1530 - 1550
  • [3] Multiple solutions for a class of quasilinear Schrodinger equations
    Huang, Chen
    Jia, Gao
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (02) : 347 - 359
  • [4] Soliton solutions for a class of generalized quasilinear Schrodinger equations
    Sun, Rui
    [J]. AIMS MATHEMATICS, 2021, 6 (09): : 9660 - 9674
  • [5] Soliton solutions for a class of quasilinear Schrodinger equations with a parameter
    Alves, Claudianor O.
    Wang, Youjun
    Shen, Yaotian
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (01) : 318 - 343
  • [6] Positive solutions for a class of supercritical quasilinear Schrodinger equations
    Deng, Yin
    Zhang, Xiaojing
    Jia, Gao
    [J]. AIMS MATHEMATICS, 2022, 7 (04): : 6565 - 6582
  • [7] Symmetric and nonsymmetric solutions for a class of quasilinear Schrodinger equations
    Severo, Uberlandio B.
    [J]. ADVANCED NONLINEAR STUDIES, 2008, 8 (02) : 375 - 389
  • [8] Existence of solutions for a class of quasilinear Schrodinger equations on R
    Wang, Da-Bin
    Yang, Kuo
    [J]. BOUNDARY VALUE PROBLEMS, 2015, : 1 - 5
  • [9] Multiple solutions for a class of quasilinear Schrodinger equations in RN
    Chen, Caisheng
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
  • [10] Existence of solutions for a class of generalized quasilinear Schrodinger equations
    Wang, Youjun
    Mei, Yanfang
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 102