A note on existence of antisymmetric solutions for a class of nonlinear Schrödinger equations

被引:0
|
作者
Janete S. Carvalho
Liliane A. Maia
Olimpio H. Miyagaki
机构
[1] Universidade de Brasília,Departamento de Matemática
[2] Universidade Federal de Viçosa,Departamento de Matemática
关键词
35J60; 35D05; 35J20; 47J30; Nonlinear Schrödinger equation; Concentration–Compactnessprinciple;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the nonlinear Schrödinger equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\triangle u + V(x)u= f(u)\quad {\rm in}\quad \mathbb{R}^N.$$\end{document}We assume that V is invariant under an orthogonal involution and show the existence of a particular type of sign changing solution. The basic tool employed here is the Concentration–Compactness Principle.
引用
收藏
页码:67 / 86
页数:19
相关论文
共 50 条
  • [1] A note on existence of antisymmetric solutions for a class of nonlinear Schrodinger equations
    Carvalho, Janete S.
    Maia, Liliane A.
    Miyagaki, Olimpio H.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (01): : 67 - 86
  • [2] GLOBAL SOLUTIONS FOR A CLASS OF NONLINEAR SCHRDINGER EQUATIONS
    梅茗
    [J]. Science Bulletin, 1991, (18) : 1578 - 1578
  • [3] Soliton solutions of a class of generalized nonlinear schrödinger equations
    Cao Q.
    Zhang T.
    Djidjeli K.
    Price G.W.
    Twizell E.H.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 1997, 12 (4) : 389 - 398
  • [4] The Existence of Infinitely Many Solutions for the Nonlinear Schrödinger–Maxwell Equations
    Wen-nian Huang
    X. H. Tang
    [J]. Results in Mathematics, 2014, 65 : 223 - 234
  • [5] Exact solutions to a class of nonlinear Schrödinger-type equations
    Jin-Liang Zhang
    Ming-Liang Wang
    [J]. Pramana, 2006, 67 : 1011 - 1022
  • [6] Multi-peak solutions for a class of nonlinear Schrödinger equations
    Angela Pistoia
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2002, 9 : 69 - 91
  • [7] Existence and nonuniqueness of solutions for a class of asymptotically linear nonperiodic Schrödinger equations
    Dong-Lun Wu
    Fengying Li
    Hongxia Lin
    [J]. Journal of Fixed Point Theory and Applications, 2022, 24
  • [8] Existence and multiplicity of solutions for a class of sublinear Schrödinger-Maxwell equations
    Ying Lv
    [J]. Boundary Value Problems, 2013
  • [9] The Existence of Arbitrary Multiple Nodal Solutions for a Class of Quasilinear Schrödinger Equations
    Wang, Kun
    Huang, Chen
    Jia, Gao
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)
  • [10] Existence and Uniqueness of Positive Solutions to Three Coupled Nonlinear Schrdinger Equations
    Guo-bei FANG
    Zhong-xue L
    [J]. Acta Mathematicae Applicatae Sinica, 2015, 31 (04) : 1021 - 1032