Robust regression for mixed Poisson-Gaussian model

被引:6
|
作者
Kubinova, Marie [1 ]
Nagy, James G. [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
基金
美国国家科学基金会;
关键词
Poisson-Gaussian model; Weighted least squares; Robust regression; Preconditioner; Image restoration; 65N20; 49M15; 62F35; ITERATIVE METHODS; IMAGE; PRECONDITIONERS; NOISE;
D O I
10.1007/s11075-017-0463-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on efficient computational approaches to compute approximate solutions of a linear inverse problem that is contaminated with mixed Poisson-Gaussian noise, and when there are additional outliers in the measured data. The Poisson-Gaussian noise leads to a weighted minimization problem, with solution-dependent weights. To address outliers, the standard least squares fit-to-data metric is replaced by the Talwar robust regression function. Convexity, regularization parameter selection schemes, and incorporation of non-negative constraints are investigated. A projected Newton algorithm is used to solve the resulting constrained optimization problem, and a preconditioner is proposed to accelerate conjugate gradient Hessian solves. Numerical experiments on problems from image deblurring illustrate the effectiveness of the methods.
引用
收藏
页码:825 / 851
页数:27
相关论文
共 50 条
  • [11] FAST TOTAL VARIATION BASED IMAGE RESTORATION UNDER MIXED POISSON-GAUSSIAN NOISE MODEL
    Ghulyani, Manu
    Arigovindan, Muthuvel
    2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1264 - 1267
  • [12] A MIXED POISSON INVERSE-GAUSSIAN REGRESSION-MODEL
    DEAN, C
    LAWLESS, JF
    WILLMOT, GE
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1989, 17 (02): : 171 - 181
  • [13] PROXIMAL ADMM APPROACH FOR IMAGE RESTORATION WITH MIXED POISSON-GAUSSIAN NOISE
    Chen, Miao
    Tang, Yuchao
    Zhang, Jie
    Zeng, Tieyong
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (03): : 540 - 568
  • [14] A Variational Model for Image Denoising Corrupted by Poisson-Gaussian Noise
    Zhao, Lanfei
    Wang, Aili
    Wang, Bo
    Lyu, Xinmiao
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2017, 29 (03): : 428 - 435
  • [15] A REWEIGHTED l2 METHOD FOR IMAGE RESTORATION WITH POISSON AND MIXED POISSON-GAUSSIAN NOISE
    Li, Jia
    Shen, Zuowei
    Yin, Rujie
    Zhang, Xiaoqun
    INVERSE PROBLEMS AND IMAGING, 2015, 9 (03) : 875 - 894
  • [16] Receiver design for SPAD-based VLC systems under Poisson-Gaussian mixed noise model
    Mao, Tianqi
    Wang, Zhaocheng
    Wang, Qi
    OPTICS EXPRESS, 2017, 25 (02): : 799 - 809
  • [17] Fast Roughness Minimizing Image Restoration Under Mixed Poisson-Gaussian Noise
    Ghulyani, Manu
    Arigovindan, Muthuvel
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 134 - 149
  • [18] CBCT image reconstruction using a mixed Poisson-Gaussian maximum likelihood function
    Zheng R.-Z.
    Zhao F.
    Li B.
    Tian X.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2020, 28 (02): : 457 - 464
  • [19] Poisson-mixed Inverse Gaussian Regression Model and Its Application
    Gomez-Deniz, Emilio
    Ghitany, M. E.
    Gupta, Ramesh C.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (08) : 2767 - 2781
  • [20] An Unbiased Risk Estimator for Image Denoising in the Presence of Mixed Poisson-Gaussian Noise
    Le Montagner, Yoann
    Angelini, Elsa D.
    Olivo-Marin, Jean-Christophe
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (03) : 1255 - 1268