Robust regression for mixed Poisson-Gaussian model

被引:6
|
作者
Kubinova, Marie [1 ]
Nagy, James G. [2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
基金
美国国家科学基金会;
关键词
Poisson-Gaussian model; Weighted least squares; Robust regression; Preconditioner; Image restoration; 65N20; 49M15; 62F35; ITERATIVE METHODS; IMAGE; PRECONDITIONERS; NOISE;
D O I
10.1007/s11075-017-0463-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper focuses on efficient computational approaches to compute approximate solutions of a linear inverse problem that is contaminated with mixed Poisson-Gaussian noise, and when there are additional outliers in the measured data. The Poisson-Gaussian noise leads to a weighted minimization problem, with solution-dependent weights. To address outliers, the standard least squares fit-to-data metric is replaced by the Talwar robust regression function. Convexity, regularization parameter selection schemes, and incorporation of non-negative constraints are investigated. A projected Newton algorithm is used to solve the resulting constrained optimization problem, and a preconditioner is proposed to accelerate conjugate gradient Hessian solves. Numerical experiments on problems from image deblurring illustrate the effectiveness of the methods.
引用
收藏
页码:825 / 851
页数:27
相关论文
共 50 条
  • [31] A Poisson-Gaussian Denoising Dataset with Real Fluorescence Microscopy Images
    Zhang, Yide
    Zhu, Yinhao
    Nichols, Evan
    Wang, Qingfei
    Zhang, Siyuan
    Smith, Cody
    Howard, Scott
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 11702 - 11710
  • [32] PARAMETRIC MODELING OF POISSON-GAUSSIAN RANDOM-MATRIX ENSEMBLES
    MA, JZ
    HASEGAWA, H
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1994, 93 (04): : 529 - 535
  • [33] A Bayesian Poisson-Gaussian Process Model for Popularity Learning in Edge-Caching Networks
    Mehrizi, Sajad
    Tsakmalis, Anestis
    Chatzinotas, Symeon
    Ottersten, Bjoern
    IEEE ACCESS, 2019, 7 : 92341 - 92354
  • [34] A Convex Approach for Image Restoration with Exact Poisson-Gaussian Likelihood
    Chouzenoux, Emilie
    Jezierska, Anna
    Pesquet, Jean-Christophe
    Talbot, Hugues
    SIAM JOURNAL ON IMAGING SCIENCES, 2015, 8 (04): : 2662 - 2682
  • [35] Robust Video Denoising for Mixed Poisson, Gaussian and Impule Noise
    Li, Weili
    Yin, Xiaoqing
    Liu, Yu
    Zhang, Maojun
    2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017), 2017, : 459 - 462
  • [36] Poisson-Gaussian Mixed Noise Removing for Hyperspectral Image via Spatial-spectral Structure Similarity
    Yang, Jingxiang
    Zhao, Yongqiang
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 3715 - 3720
  • [37] Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise
    Makitalo, Markku
    Foi, Alessandro
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (01) : 91 - 103
  • [38] POISSON-GAUSSIAN NOISE PARAMETER ESTIMATION IN FLUORESCENCE MICROSCOPY IMAGING
    Jezierska, Anna
    Talbot, Hugues
    Chaux, Caroline
    Pesquet, Jean-Christophe
    Engler, Gilbert
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1663 - 1666
  • [40] Ridge estimator in a mixed Poisson regression model
    Tharshan, Ramajeyam
    Wijekoon, Pushpakanthie
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (07) : 3253 - 3270